Skip to main content
Log in

Design analysis of Bloch surface wave based sensor for haemoglobin concentration measurement

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In this paper, a Bloch Surface Waves (BSW) based sensor is proposed to estimate the haemoglobin concentration in human blood. The behaviour of the sensor is analysed using a transfer matrix method. The proposed structure is designed considering one-dimensional photonic crystal, where a defective top layer is deliberately introduced to confine a surface plasmon-like mode called Bloch mode at the top interface. The effective refractive index of top interface changes along with haemoglobin concentration. Thereby, monitoring the angel of incidence to confine BSW mode can helps in determining the haemoglobin concentration. The sensing capability, FWHM and figure-of-merit of the proposed structure are improved by optimizing the defect layer thicknesses, incident angels and wavelengths. Proposed structure shows an average FWHM and average sensitivity of around 0.00508 and 0.0133°/(g/L) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd El-Aziz OA, Elsayed HA, Sayed MI (2019) One-dimensional defective photonic crystals for the sensing and detection of protein. Appl Opt 58:8309–8315

    CAS  Google Scholar 

  • Ansarihadipour H, Ziafatikafi H (2012) Structural and spectroscopic changes of human hemoglobin during iron-mediated oxidative stress. J Arak Univ Med Sci 14(6):10–18

    CAS  Google Scholar 

  • Barer R (1952) Interference microscopy and mass determination. Nature 169:366

    CAS  Google Scholar 

  • Barer R (1954) Refractometry of living cells: part I. Basic principles. Quart J Microsc Sci 95:399–423

    CAS  Google Scholar 

  • Barer R (1957) Refractometry and interferometry of living cells. J Opt Soc Am 47(6):545–556

    CAS  Google Scholar 

  • Beutler E, Waalen J (2006) The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration. Blood 107:1747–1750

    CAS  Google Scholar 

  • Bijalwan A, Rastogi V (2018) Gold–aluminum-based surface plasmon resonance sensor with a high quality factor and figure of merit for the detection of hemoglobin. Appl Opt 57:9230–9237

    CAS  Google Scholar 

  • Bornhop J (1995) Micro volume index of refraction determinations by interferometric backscatter. Appl Opt 34(18):3234–3239

    CAS  Google Scholar 

  • Brahmachari K, Ray M (2016) Modelling and performance analysis of a plasmonic biosensor comprising of silicon and chalcogenide materials for detecting refractive index variations of hemoglobin in near infrared. Optik 127:3517–3522

    CAS  Google Scholar 

  • Chan LL et al (2009) A method for identifying small-molecule aggregators using photonic crystal biosensor microplates. J Assoc Lab Autom 14(6):348–359

    CAS  Google Scholar 

  • Choi CJ et al (2010) Comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays. Anal Biochem 405(1):1–10

    CAS  Google Scholar 

  • Ciminelli C et al (2013) Label free optical resonant sensors for biochemical applications. Prog Quant Electron 37:51–107

    Google Scholar 

  • Cunningham B, Li P, Lin B, Pepper J (2002) Colorimetric resonant reflection as a direct biochemical assay technique. Sens Actuator B 81(2):316–328

    CAS  Google Scholar 

  • Dutta HS et al (2017) Analysis of dispersion diagram for high performance refractive index sensor based on photonic crystal waveguides. Photonics Nanostruct Fundam Appl 23:21–27

    Google Scholar 

  • Frascella F et al (2016) Hydrogel-terminated photonic crystal for label-free detection of angiopoietin-1. J Lightwave Technol 34(15):3641–3645

    CAS  Google Scholar 

  • Friebel M et al (2005) Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements. J Biomed Opt 10:064019–64025

    Google Scholar 

  • Friebel M et al (2006) Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250–1100 nm dependent on concentration. Appl Opt 45:2838–2842

    CAS  Google Scholar 

  • Ghosh G (1998) Handbook of thermo-optic coefficients of optical materials with applications. Handbook of optical constants of solids. Elsevier, Amsterdam

    Google Scholar 

  • Goyal AK, Pal S (2015a) Design and simulation of high sensitive gas sensor using a ring-shaped photonic crystal waveguide. Phys Scr 90:025503

    Google Scholar 

  • Goyal AK, Pal S (2015b) Design and simulation of high sensitive photonic crystal waveguide sensor. Optik 126(2):240–243

    CAS  Google Scholar 

  • Goyal AK, Dutta HS, Pal S (2016a) Performance optimization of photonic crystal resonator. Opt Quantum Electron 48:431

    Google Scholar 

  • Goyal AK, Dutta HS, Pal S (2016b) Design and analysis of photonic crystal micro-cavity based optical sensor platform. AIP Conf Proc 1724:020005

    Google Scholar 

  • Goyal AK, Dutta HS, Pal S (2018) Porous photonic crystal structure for sensing applications. J Nanophoton 12(4):040501

    Google Scholar 

  • Heeres JT et al (2009) Identifying modulators of protein-protein interactions using photonic crystal biosensors. J Am Chem Soc 131(51):18202

    CAS  Google Scholar 

  • Heidarzadeh H (2019) Analysis and simulation of a plasmonic biosensor for haemoglobin concentration detection using noble metal nano-particles resonances. Commun Opt. https://doi.org/10.1016/j.optcom.2019.124940

    Article  Google Scholar 

  • Homola J et al (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54:3–15

    CAS  Google Scholar 

  • Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light. Princeton University Press, New Jersey

    Google Scholar 

  • Karlsson R, Stahleberg R (1995) Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities. Anal Biochem 228(2):274–280

    CAS  Google Scholar 

  • Keshavarz A, Zangenehzadeh S, Hatef A (2020) Optimization of surface plasmon resonance-based biosensors for monitoring hemoglobin levels in human blood. Nanosci Appl. https://doi.org/10.1007/s13204-020-01252-x

    Article  Google Scholar 

  • Konopsky VN et al (2013) Photonic crystal biosensor based on optical surface waves. Sensors 13(3):2566–2578

    CAS  Google Scholar 

  • Lidiya AE et al (2019) Detecting hemoglobin content blood glucose using surface plasmon resonance in D-shaped photonic crystal fiber. Opt Fiber Technol 50:132–138

    CAS  Google Scholar 

  • Liscidini M, Sipe JE (2009) Analysis of Bloch-surface-wave assisted diffraction-based biosensors. J Opt Soc Am B 26(2):279–289

    CAS  Google Scholar 

  • Maeno K et al (2016) Polymer-based photonic crystal cavity sensor for optical detection in the visible wavelength region. Anal Sci 32:117–120

    CAS  Google Scholar 

  • Paeder V et al (2011) Detection of protein aggregation with a Bloch surface wave based sensor. Sens Actuators B Chem 157(1):260–264

    CAS  Google Scholar 

  • Pochi Y (1977) Electromagnetic propagation in periodic stratified media I. General theory. J Opt Soc Am 67(4):423–438

    Google Scholar 

  • Quyang Q et al (2016) Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci Rep 6:28190

    Google Scholar 

  • Rivolo P et al (2012) Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves. Sens Actuators B Chem 161(1):1046–1052

    CAS  Google Scholar 

  • Saleh EA, Teich MC (2007) Fundamentals of photonics. Wiley-Interscience, Hoboken

    Google Scholar 

  • Seitz WR (1984) Chemical sensors based on fiber optics. Anal Chem 56:16A

    CAS  Google Scholar 

  • Sharma AK (2013) Plasmonic biosensor for detection of hemoglobin concentra-tion in human blood: design considerations. J Appl Phys 114:044701

    Google Scholar 

  • Shinn M, Robertson WM (2005) Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material. Sens Actuators B Chem 105(2):360–364

    CAS  Google Scholar 

  • Sinibaldi A et al (2013) A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals. Opt Express 21(20):23331–23344

    CAS  Google Scholar 

  • Swain KP, Palai G (2016) Estimation of human-hemoglobin using honeycomb structure: an application of photonic crystal. Optik 127:3333–3336

    CAS  Google Scholar 

  • Tavousi A, Rakhshani MR, Birjandi MA (2018) High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Opt Commun 429:166–174

    CAS  Google Scholar 

  • White IM et al (2008) On the performance quantification of resonant refractive index sensors. Opt Express 16:1020–1028

    Google Scholar 

  • Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062

    CAS  Google Scholar 

  • Zhao Y, Zhao X, Gu Z (2010) Photonic crystals in bioassays. Adv Funct Mater 20(18):2970–2988

    CAS  Google Scholar 

Download references

Acknowledgement

Authors are thankful to all members of ECE department for their help and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Goyal.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, A.K., Pal, S. Design analysis of Bloch surface wave based sensor for haemoglobin concentration measurement. Appl Nanosci 10, 3639–3647 (2020). https://doi.org/10.1007/s13204-020-01437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01437-4

Keywords

Navigation