Skip to main content

Advertisement

Log in

In Vitro N-Terminal Acetylation of Bacterially Expressed Parvalbumins by N-Terminal Acetyltransferases from Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Most eukaryotic proteins are N-terminally acetylated (Nt-acetylated) by specific N-terminal acetyltransferases (NATs). Although this co-/post-translational protein modification may affect different aspects of protein functioning, it is typically neglected in studies of bacterially expressed eukaryotic proteins, lacking this modification. To overcome this limitation of bacterial expression, we have probed the efficiency of recombinant Escherichia coli NATs (RimI, RimJ, and RimL) with regard to in vitro Nt-acetylation of several parvalbumins (PAs) expressed in E. coli. PA is a calcium-binding protein of vertebrates, which is sensitive to Nt-acetylation. Our analyses revealed that only metal-free PAs were prone to Nt-acetylation (up to 100%), whereas Ca2+ binding abolished this modification, thereby indicating that Ca2+-induced structural stabilization of PAs impedes their Nt-acetylation. RimJ and RimL were active towards all PAs with N-terminal serine. Their activity towards PAs beginning with alanine was PA-specific, suggesting the importance of the subsequent residues. RimI showed the least activity regardless of the PA studied. Overall, NATs from E. coli are suited for post-translational Nt-acetylation of bacterially expressed eukaryotic proteins with decreased structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Narita, K. (1958). Isolation of acetylpeptide from enzymic digests of TMV-protein. Biochimica et Biophysica Acta, 28, 184–191.

    CAS  PubMed  Google Scholar 

  2. Jornvall, H. (1975). Acetylation of protein N-terminal amino groups structural observations on alpha-amino acetylated proteins. Journal of Theoretical Biology, 55(1), 1–12.

    CAS  PubMed  Google Scholar 

  3. Persson, B., Flinta, C., von Heijne, G., & Jornvall, H. (1985). Structures of N-terminally acetylated proteins. European Journal of Biochemistry, 152(3), 523–527.

    CAS  PubMed  Google Scholar 

  4. Starheim, K. K., Gromyko, D., Velde, R., Varhaug, J. E., & Arnesen, T. (2009). Composition and biological significance of the human Nalpha-terminal acetyltransferases. BMC Proceedings, 3(Suppl 6), S3.

    PubMed  PubMed Central  Google Scholar 

  5. Soppa, J. (2010). Protein acetylation in archaea, bacteria, and eukaryotes. Archaea, 2010, 19.

    Google Scholar 

  6. Arnesen, T., Van Damme, P., Polevoda, B., Helsens, K., Evjenth, R., Colaert, N., Varhaug, J. E., Vandekerckhove, J., Lillehaug, J. R., Sherman, F., & Gevaert, K. (2009). Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proceedings of the National Academy of Sciences U S A, 106, 8157–8162.

    CAS  Google Scholar 

  7. Van Damme, P., Arnesen, T., & Gevaert, K. (2011). Protein alpha-N-acetylation studied by N-terminomics. FEBS Journal, 278(20), 3822–3834.

    Google Scholar 

  8. Scott, D. C., Monda, J. K., Bennett, E. J., Harper, J. W., & Schulman, B. A. (2011). N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science, 334(6056), 674–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Setty, S. R., Strochlic, T. I., Tong, A. H., Boone, C., & Burd, C. G. (2004). Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p. Nature Cell Biology, 6(5), 414–419.

    CAS  PubMed  Google Scholar 

  10. Forte, G. M., Pool, M. R., & Stirling, C. J. (2011). N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biology, 9(5), e1001073.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Behnia, R., Panic, B., Whyte, J. R., & Munro, S. (2004). Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nature Cell Biology, 6(5), 405–413.

    CAS  PubMed  Google Scholar 

  12. Mima, J., Kondo, T., & Hayashi, R. (2002). N-terminal acetyl group is essential for the inhibitory function of carboxypeptidase Y inhibitor (I(C)). FEBS Letters, 532(1-2), 207–210.

    CAS  PubMed  Google Scholar 

  13. Hitchcock-DeGregori, S. E., & Heald, R. W. (1987). Altered actin and troponin binding of amino-terminal variants of chicken striated muscle alpha-tropomyosin expressed in Escherichia coli. Journal of Biological Chemistry, 262, 9730–9735.

    CAS  Google Scholar 

  14. Urbancikova, M., & Hitchcock-DeGregori, S. E. (1994). Requirement of amino-terminal modification for striated muscle alpha-tropomyosin function. Journal of Biological Chemistry, 269(39), 24310–24315.

    CAS  Google Scholar 

  15. Ogawa, H., Gomi, T., Takata, Y., Date, T., & Fujioka, M. (1997). Recombinant expression of rat glycine N-methyltransferase and evidence for contribution of N-terminal acetylation to co-operative binding of S-adenosylmethionine. Biochemical Journal, 327(2), 407–412.

    PubMed Central  Google Scholar 

  16. Groenen, P., Merck, K., de Jong, W., & Bloemendal, H. (1994). Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. European Journal of Biochemistry, 225, 1–19.

    CAS  PubMed  Google Scholar 

  17. Johnson, M., Coulton, A. T., Geeves, M. A., & Mulvihill, D. P. (2010). Targeted amino-terminal acetylation of recombinant proteins in E. coli. PLoS One, 5, e15801.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wada, M., & Shirahata, A. (2010). Identification of the primary structure and post-translational modification of rat S-adenosylmethionine decarboxylase. Biological and Pharmaceutical Bulletin, 33(5), 891–894.

    CAS  PubMed  Google Scholar 

  19. Kikuchi, J., Iwafune, Y., Akiyama, T., Okayama, A., & Nakamura, H. (2010). Co- and post-translational modifications of the 26S proteasome in yeast. Proteomics, 10(15), 2769–2779.

    CAS  PubMed  Google Scholar 

  20. Vologzhannikova, A. A., Khorn, P. A., Kazakov, A. S., Ismailov, R. G., Sokolov, A. S., Uversky, V. N., Permyakov, E. A., & Permyakov, S. E. (2017). In search for globally disordered apo-parvalbumins: case of parvalbumin β-1 from coho salmon. Cell Calcium, 67, 53–64.

    CAS  PubMed  Google Scholar 

  21. Permyakov, S. E., Vologzhannikova, A. A., Emelyanenko, V. I., Knyazeva, E. L., Kazakov, A. S., Lapteva, Y. S., Permyakova, M. E., Zhadan, A. P., & Permyakov, E. A. (2012). The impact of alpha-N-acetylation on structural and functional status of parvalbumin. Cell Calcium, 52(5), 366–376.

    CAS  PubMed  Google Scholar 

  22. Drazic, A., Myklebus, L. M., Ree, R., & Arnesen, T. (2016). The world of protein acetylation. Biochimica et Biophysica Acta, 1864(10), 1372–1401.

    CAS  PubMed  Google Scholar 

  23. Aksnes, H., Drazic, A., Marie, M., & Arnesen, T. (2016). First things first: vital protein marks by N-terminal acetyltransferases. Trends in Biochemical Sciences, 41(9), 746–760.

    CAS  PubMed  Google Scholar 

  24. Dinh, T. V., Bienvenut, W. V., Linster, E., Feldman-Salit, A., Jung, V. A., Meinnel, T., Hell, R., Giglione, C., & Wirtz, M. (2015). Molecular identification and functional characterization of the first Nα-acetyltransferase in plastids by global acetylome profiling. Proteomics, 15(14), 2426–2435.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vetting, M. W., Carvalho, L. P. S., Yu, M., Hegde, S. S., Magnet, S., Roderick, S. L., & Blanchard, J. S. (2005). Structure and functions of the GNAT superfamily of acetyltransferases. Archives of Biochemistry and Biophysics, 433(1), 212–226.

    CAS  PubMed  Google Scholar 

  26. Favrot, L., Blanchard, J. S., & Vergnolle, O. (2016). Bacterial GCN5-related N-acetyltransferases: from resistance to regulation. Biochemistry, 55(7), 989–1002.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vetting, M. W., Bareich, D. C., Yu, M., & Blanchard, J. S. (2008). Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for N(alpha)-acetylation of ribosomal protein S18. Protein Sciences, 17(10), 1781–1790.

    CAS  Google Scholar 

  28. Liszczak, G., & Marmorstein, R. (2013). Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog. Proceedings of the National Academy of Sciences U S A, 110, 14652–14657.

    CAS  Google Scholar 

  29. Polevoda, B., & Sherman, F. (2003). N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. Journal of Molecular Biology, 325(4), 595–622.

    CAS  PubMed  Google Scholar 

  30. Starheim, K. K., Gevaert, K., & Arnesen, T. (2012). Protein N-terminal acetyltransferases: when the start matters. Trends in Biochemical Sciences, 37(4), 152–161.

    CAS  PubMed  Google Scholar 

  31. Bienvenut, W. V., Giglione, C., & Meinnel, T. (2015). Proteome-wide analysis of the amino terminal status of Escherichia coli proteins at the steady-state and upon deformylation inhibition. Proteomics, 15(14), 2503–2518.

    CAS  PubMed  Google Scholar 

  32. Falb, M., Aivaliotis, M., Garcia-Rizo, C., Bisle, B., Tebbe, A., Klein, C., Konstantinidis, K., Siedler, F., Pfeiffer, F., & Oesterhelt, O. (2006). Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey. Journal of Molecular Biology, 362, 915–924.

    CAS  PubMed  Google Scholar 

  33. Ouidir, T., Jarnier, F., Cosette, P., Jouenne, T., & Hardouin, J. (2015). Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14. Journal of Proteomics, 114, 214–225.

    CAS  PubMed  Google Scholar 

  34. Pathak, D., Bhat, A. H., Sapehia, V., Rai, J., & Rao, A. (2016). Biochemical evidence for relaxed substrate specificity of Na-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis. Scientific Reports, 6(1), 28892.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmidt, A., Kochanowski, K., Vedelaar, S., Ahrne, E., Volkmer, B., Callipo, L., Knoops, K., Bauer, M., Aebersold, R., & Heinemann, M. (2016). The quantitative and condition-dependent Escherichia coli proteome. Nature Biotechnology, 34(1), 104–110.

    CAS  PubMed  Google Scholar 

  36. Yoshikawa, A., Isono, S., Sheback, A., & Isono, K. (1987). Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12. Molecular and General Genetics, 209(3), 481–488.

    CAS  PubMed  Google Scholar 

  37. Vetting, M. W., Carvalho, L. P. S., Roderick, S. L., & Blanchard, J. S. (2005). A novel Dimeric structure of the RimL Nα-acetyltransferase from Salmonella typhimurium. Journal of Biological Chemistry, 280(23), 22108–22114.

    CAS  Google Scholar 

  38. Isono, K., & Isono, S. (1980). Ribosomal protein modification in Escherichia coli. II. Studies of a mutant lacking the N-terminal acetylation of protein S18. Molecular and General Genetics, 177(4), 645–651.

    CAS  PubMed  Google Scholar 

  39. Tanaka, S., Matsushita, Y., Yoshikawa, A., & Isono, K. (1989). Cloning and molecular characterization of the gene rimL which encodes an enzyme acetylating ribosomal protein L12 of Escherichia coli K12. Molecular and General Genetics, 217(2-3), 289–293.

    CAS  PubMed  Google Scholar 

  40. White-Ziegler, C. A., Black, A. M., Eliades, S. H., Young, S., & Porter, K. (2002). The N-acetyltransferase RimJ responds to environmental stimuli to repress pap fimbrial transcription in Escherichia coli. Journal of Bacteriology, 184(16), 4334–4342.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. White-Ziegler, C. A., & Low, D. A. (1992). Thermoregulation of the pap operon: evidence for the involvement of RimJ, the N-terminal acetylase of ribosomal protein S5. Journal of Bacteriology, 174(21), 7003–7012.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Miao, L., Fang, H., Li, Y., & Chen, H. (2007). Studies of the in vitro Nalpha-acetyltransferase activities of E. coli RimL protein. Biochemical and Biophysical Research Communications, 357(3), 641–647.

    CAS  PubMed  Google Scholar 

  43. Eastwood, T. A., Baker, K., Brooker, H. R., Frank, S., & Mulvihill, D. P. (2017). An enhanced recombinant amino-terminal acetylation system and novel in vivo high-throughput screen for molecules affecting a-synuclein oligomerisation. FEBS Letters, 591(6), 833–841.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Esipov, R. S., Makarov, D. A., Stepanenko, V. N., & Miroshnikov, A. I. (2016). Development of the intein-mediated method for production of recombinant thymosin beta4 from the acetylated in vivo fusion protein. Journal of Biotechnology, 228, 73–81.

    CAS  PubMed  Google Scholar 

  45. Ren, Y., Yao, X., Dai, H., Li, S., Fang, H., Chen, H., & Zhou, C. (2011). Production of Na-acetylated thymosin a1 in Escherichia coli. Microbial Cell Factories, 10, 2–8.

    CAS  Google Scholar 

  46. Fang, H., Zhang, X., Shen, L., Si, X., Ren, Y., Dai, H., Li, S., Zhou, C., & Chen, H. (2009). RimJ is responsible for N(alpha)-acetylation of thymosin alpha1 in Escherichia coli. Applied Microbiology and Biotechnology, 84(1), 99–104.

    CAS  PubMed  Google Scholar 

  47. Chen, J., Li, H., Wang, T., Sun, S., & Liu, J. (2017). Production of N(alpha)-acetyl Talpha1-HSA through in vitro acetylation by RimJ. Oncotarget, 8(56), 95247–95255.

    PubMed  PubMed Central  Google Scholar 

  48. Pathak, D., Bhat, A. H., Sapehia, V., Rai, J., & Rao, A. (2016). Biochemical evidence for relaxed substrate specificity of Na-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis. Scientific Reports, 6, 12.

    Google Scholar 

  49. Nazmi, A. R., Ozorowski, G., Pejic, M., Whitelegge, J. P., Gerke, V., & Luecke, H. (2012). N-terminal acetylation of annexin A2 is required for S100A10 binding. Biological Chemistry, 393(10), 1141–1150.

    CAS  PubMed  Google Scholar 

  50. Charbaut, E., Redekerb, V., Rossierb, J., & Sobela, A. (2002). N-terminal acetylation of ectopic recombinant proteins in Escherichia coli. FEBS Letters, 529(2-3), 341–345.

    CAS  PubMed  Google Scholar 

  51. Pechere, J. F. (1968). Muscular parvalbumins as homologous proteins. Comparative Biochemistry and Physiology, 24(1), 289–295.

    CAS  PubMed  Google Scholar 

  52. Henrotte, J. G. (1952). A crystalline constituent from myogen of carp muscles. Nature, 169(4310), 968–969.

    CAS  PubMed  Google Scholar 

  53. Hamoir, G., & Konosu, S. (1965). Carp myogens of white and red muscles. General composition and isolation of low-molecular-weight components of abnormal amino acid composition. Journal of Biochemistry, 96, 85–97.

    CAS  Google Scholar 

  54. Konosu, S., Hamoir, G., & Pechere, J. F. (1965). Carp myogens of white and red muscles. Properties and amino acid composition of the main low-molecular-weight components of white muscle. Journal of Biochemistry, 96, 98–112.

    CAS  Google Scholar 

  55. Muntener, M., Kaser, L., Weber, J., & Berchtold, M. W. (1995). Increase of skeletal muscle relaxation speed by direct injection of parvalbumin cDNA. Proceedings of the National Academy of Sciences U S A, 92, 6504–6508.

    CAS  Google Scholar 

  56. Heizmann, C. W., Berchtold, M. W., & Rowlerson, A. M. (1982). Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proceedings of the National Academy of Sciences U S A, 79, 7243–7247.

    CAS  Google Scholar 

  57. Yin, Y., Henzl, M. T., Lorber, B., Nakazawa, T., Thomas, T. T., Jiang, F., Langer, R., & Benowitz, L. I. (2006). Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nature Neuroscience, 9(6), 843–852.

    CAS  PubMed  Google Scholar 

  58. Bugajska-Schretter, A., Elfman, L., Fuchs, T., Kapiotis, S., Rumpold, H., Valenta, R., & Spitzauer, S. (1998). Parvalbumin, a cross-reactive fish allergen, contains IgE-binding epitopes sensitive to periodate treatment and Ca2+ depletion. Journal of Allergy and Clinical Immunology, 101(1), 67–74.

    CAS  Google Scholar 

  59. Bannon, G. A. (2004). What makes a food protein an allergen? Current Allergy and Asthma Reports, 4(1), 43–46.

    PubMed  Google Scholar 

  60. Elsayed, S., & Aas, K. (1971). Characterization of a major allergen (cod). Observations on effect of denaturation on the allergenic activity. The Journal of Allergy, 47(5), 283–291.

    CAS  PubMed  Google Scholar 

  61. Bugajska-Schretter, A., Grote, M., Vangelista, L., Valent, P., Sperr, W. R., Rumpold, H., Pastore, A., Reichelt, R., Valenta, R., & Spitzauer, S. (2000). Purification, biochemical, and immunological characterisation of a major food allergen: different immunoglobulin E recognition of the apo- and calcium-bound forms of carp parvalbumin. Gut, 46(5), 661–669.

    CAS  PubMed  Google Scholar 

  62. Taylor, S. L., Kabourek, J. L., & Hefle, S. L. (2004). Fish allergy: fish and products thereof. Journal of Food Science, 69(8), R175–R180.

    CAS  Google Scholar 

  63. Jenkins, J. A., Breiteneder, H., & Mills, E. N. (2007). Evolutionary distance from human homologs reflects allergenicity of animal food proteins. Journal of Allergy and Clinical Immunology, 120(6), 1399–1405.

    CAS  Google Scholar 

  64. Baker, R. T., Catanzariti, A. M., Karunasekara, Y., Soboleva, T. A., Sharwood, R., Whitney, S., & Board, P. G. (2005). Using deubiquitylating enzymes as research tools. Methods in Enzymology, 398, 540–554.

    CAS  PubMed  Google Scholar 

  65. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., & Gray, T. (1995). How to measure and predict the molar absorption coefficient of a protein. Protein Science, 4(11), 2411–2423.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Permyakov, S. E., Karnoup, A. S., Bakunts, A. G., & Permyakov, E. A. (2009). Sequence microheterogeneity of parvalbumin pI 5.0 of pike: a mass spectrometric study. Biochimica et Biophysica Acta, 1794(1), 129–136.

    CAS  PubMed  Google Scholar 

  67. Permyakov, S. E., Vologzhannikova, A. A., Khorn, P. A., Shevelyova, M. P., Kazakov, A. S., Emelyanenko, V. I., Denesyuk, A. I., Denessiouk, K., Uversky, V. N., & Permyakov, E. A. (2018). Comprehensive analysis of the roles of ‘black’ and ‘gray’ clusters in structure and function of rat beta-parvalbumin. Cell Calcium, 75, 64–78.

    CAS  PubMed  Google Scholar 

  68. Yazawa, M., Sakuma, M., & Yagi, K. (1980). Calmodulins from muscles of marine invertebrates, scallop and sea anemone. Journal of Biochemistry, 87(5), 1313–1320.

    CAS  PubMed  Google Scholar 

  69. Blum, H. E., Lehky, P., Kohler, L., Stein, E. A., & Fischer, E. H. (1977). Comparative properties of vertebrate parvalbumins. Journal of Biological Chemistry, 252(9), 2834–2838.

    CAS  Google Scholar 

  70. Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., & Dunker, A. K. (2001). Sequence complexity of disordered protein. Proteins, 42(1), 38–48.

    CAS  PubMed  Google Scholar 

  71. Peng, K., Vucetic, S., Radivojac, P., Brown, C. J., Dunker, A. K., & Obradovic, Z. (2005). Optimizing long intrinsic disorder predictors with protein evolutionary information. Journal of Bioinformatics and Computational Biology, 3(01), 35–60.

    CAS  PubMed  Google Scholar 

  72. Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K., & Uversky, V. N. (2010). PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochimica et Biophysica Acta, 1804(4), 996–1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dosztányi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21(16), 3433–3434.

    PubMed  Google Scholar 

  74. Walsh, I., Giollo, M., Di Domenico, T., Ferrari, C., Zimmermann, O., & Tosatto, S. C. (2015). Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics, 31(2), 201–208.

    CAS  PubMed  Google Scholar 

  75. Fan, X., & Kurgan, L. (2014). Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. Journal of Biomolecular Structure and Dynamics, 32(3), 448–464.

    CAS  PubMed  Google Scholar 

  76. Peng, Z., & Kurgan, L. (2012). On the complementarity of the consensus-based disorder prediction. In R.B., Altman, A.K., Dunker, L., Hunter, T.A., Murray & Klein, T.E. (Eds.), Pacific Symposium on Biocomputing (176–187). Kohala Coast: World Scientific

  77. Pejaver, V., Hsu, W. L., Xin, F., Dunker, A. K., Uversky, V. N., & Radivojac, P. (2014). The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Science, 23(8), 1077–1093.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Frottin, F., Martinez, A., Peynot, P., Mitra, S., Holz, R. C., Giglione, C., & Meinnel, T. (2006). The proteomics of N-terminal methionine cleavage. Molecular and Cellular Proteomics, 5(12), 2336–2349.

    CAS  PubMed  Google Scholar 

  79. Yamada, K. D., Omori, S., Nishi, H., & Miyagi, M. (2017). Identification of the sequence determinants of protein N-terminal acetylation through a decision tree approach. BMC Bioinformatics, 18(1), 289.

    PubMed  PubMed Central  Google Scholar 

  80. Darling, A. L., & Uversky, V. N. (2018). Intrinsic disorder and posttranslational modifications: the darker side of the biological dark matter. Frontiers in Genetics, 9, 158.

    PubMed  PubMed Central  Google Scholar 

  81. Uversky, V. N., & Dunker, A. K. (2010). Understanding protein non-folding. Biochimica et Biophysica Acta, 1804(6), 1231–1264.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Xie, H., Vucetic, S., Iakoucheva, L. M., Oldfield, C. J., Dunker, A. K., Obradovic, Z., & Uversky, V. N. (2007). Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. Journal of Proteome Research, 6(5), 1917–1932.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Uversky, V. N. (2013). Intrinsic disorder-based protein interactions and their modulators. Current Pharmaceutical Design, 19(23), 4191–4213.

    CAS  PubMed  Google Scholar 

  84. Sirota, F. L., Maurer-Stroh, S., Eisenhaber, B., & Eisenhaber, F. (2015). Single-residue posttranslational modification sites at the N-terminus, C-terminus or in-between: to be or not to be exposed for enzyme access. Proteomics, 15(14), 2525–2546.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Rohan T. Baker for providing us with the pHUE and pHUsp2-cc plasmids.

Funding

The work was supported by a grant to Y.S.L. from the Russian foundation for basic research (No. 18-34-00701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulia S. Lapteva or Vladimir N. Uversky.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 21 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapteva, Y.S., Vologzhannikova, A.A., Sokolov, A.S. et al. In Vitro N-Terminal Acetylation of Bacterially Expressed Parvalbumins by N-Terminal Acetyltransferases from Escherichia coli. Appl Biochem Biotechnol 193, 1365–1378 (2021). https://doi.org/10.1007/s12010-020-03324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03324-8

Keywords

Navigation