Skip to main content
Log in

Anoxic Microbial Community Robustness Under Variation of Hydraulic Retention Time and Availability of Endogenous Electron Donors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The ADNMED (Anaerobic Digestion, Nitrification, and Mixotrophic Endogenous Denitrification) system comprises a triple chamber configuration that was shown to provide high-quality effluent regarding carbon, nitrogen, and sulfide. Hydraulic retention time (HRT) was 7 h in the anaerobic and anoxic chambers, and 5 h in the aerobic chamber (stage A). Sewage was directly added to the anoxic chamber to provide extra organic electron donors for denitrification (stage B) to improve the nitrogen removal efficiency (stage A 47 ± 19%). The addition of sewage at a flow rate equivalent to 10% of the feed flow increased nitrogen removal efficiency to 61 ± 12%. Illumina® sequencing revealed a restructuring of the microbial community in the anoxic chamber, according to the availability of the endogenous electron donors for denitrification. At stage A, denitrification was related to the decay of biomass, while the addition of sewage during stage B stimulated the establishment of fermentative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Strous, M., Van Gerven, E., Kuenen, J. G., & Jetten, M. (1997). Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Applied and Environmental Microbiology, 63(6), 2446–2448. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16535633.

    Article  CAS  Google Scholar 

  2. van Kessel, M. A., Stultiens, K., Slegers, M. F., Guerrero Cruz, S., Jetten, M. S., Kartal, B., & Op den Camp, H. J. (2018). Current perspectives on the application of N-damo and anammox in wastewater treatment. Current Opinion in Biotechnology, 50, 222–227. https://doi.org/10.1016/J.COPBIO.2018.01.031.

    Article  PubMed  Google Scholar 

  3. Foresti, E., Zaiat, M., & Vallero, M. (2006). Anaerobic processes as the core technology for sustainable domestic wastewater treatment: Consolidated applications, new trends, perspectives, and challenges. Reviews in Environmental Science and Bio/Technology, 5(1), 3–19. https://doi.org/10.1007/s11157-005-4630-9.

    Article  CAS  Google Scholar 

  4. Souza, T. S. O., Okada, D. Y., & Foresti, E. (2018). Proof of concept and improvement of a triple chamber biosystem coupling anaerobic digestion, nitrification and mixotrophic endogenous denitrification for organic matter, nitrogen and sulfide removal from domestic sewage. Bioprocess and Biosystems Engineering, 41(12), 1839–1850. https://doi.org/10.1007/s00449-018-2006-0.

    Article  PubMed  CAS  Google Scholar 

  5. Saia, F. T., Souza, T. S. O., Duarte, R. T. D., Pozzi, E., Fonseca, D., & Foresti, E. (2016). Microbial community in a pilot-scale bioreactor promoting anaerobic digestion and sulfur-driven denitrification for domestic sewage treatment. Bioprocess and Biosystems Engineering, 39(2), 341–352. https://doi.org/10.1007/s00449-015-1520-6.

    Article  PubMed  CAS  Google Scholar 

  6. Beristain-Cardoso, R., Sierra-Alvarez, R., Rowlette, P., Flores, E. R., Gomez, J., & Field, J. A. (2006). Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnology and Bioengineering, 95(6), 1148–1157. https://doi.org/10.1002/bit.21084.

    Article  CAS  Google Scholar 

  7. Tchobanoglous, G., Burton, F. L., Metcalf, E., & Stensel, H. D. (2004). Wastewater engineering: Treatment and reuse. McGraw-Hill.

  8. APHA, AWWA, & WPCF. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  9. Costa, R. B., Camiloti, P. R., Sabatini, C. A., dos Santos, C. E. D., Lima Gomes, P. C. F., & Adorno, M. Â. T. (2018). Matrix effect assessment of an ion chromatographic method to determine inorganic anions in wastewater. Water, Air, & Soil Pollution, 229(7), 212. https://doi.org/10.1007/s11270-018-3863-5.

    Article  CAS  Google Scholar 

  10. de Faria, C. V., Delforno, T. P., Okada, D. Y., & Varesche, M. B. A. (2019). Evaluation of anionic surfactant removal by anaerobic degradation of commercial laundry wastewater and domestic sewage. Environmental Technology, 40(8), 988–996. https://doi.org/10.1080/09593330.2017.1414317.

    Article  PubMed  CAS  Google Scholar 

  11. Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics., 26(19), 2460–2461. https://doi.org/10.1093/bioinformatics/btq461.

    Article  PubMed  CAS  Google Scholar 

  12. Caporaso, G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F., Costello, E., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336 https://doi.org/10.1038/nmeth.f.303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267. https://doi.org/10.1128/aem.00062-07.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST-PAlaeontological STatistics, ver. 1.89. Palaeontologia Electronica, 4(1), 1–9.

    Google Scholar 

  15. Krzywinski, M., Schein, J., Birol, İ., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., & Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645. https://doi.org/10.1101/GR.092759.109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hao, T., Xiang, P., Mackey, H. R., Chi, K., Lu, H., Chui, H., van Loosdrecht, M. C. M., & Chen, G.-H. (2014). A review of biological sulfate conversions in wastewater treatment. Water Research, 65, 1–21. https://doi.org/10.1016/j.watres.2014.06.043.

    Article  PubMed  CAS  Google Scholar 

  17. Ahn, Y. H. (2006). Sustainable nitrogen elimination biotechnologies: A review. Process Biochemistry, 41(8), 1709–1721. https://doi.org/10.1016/j.procbio.2006.03.033.

    Article  CAS  Google Scholar 

  18. Lu, H., Wu, D., Jiang, F., Ekama, G. A., van Loosdrecht, M. C. M., & Chen, G.-H. (2012). The demonstration of a novel sulfur cycle-based wastewater treatment process: Sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI®) biological nitrogen removal process. Biotechnology and Bioengineering, 109(11), 2778–2789. https://doi.org/10.1002/bit.24540.

    Article  PubMed  CAS  Google Scholar 

  19. De Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., et al. (2009). Bergey’s manual of systematic bacteriology. In G. M. Garrity (Ed.), The Firmicutes (Vol. 3, 2nd ed.). New York: Springer.

    Google Scholar 

  20. Brenner, D. J., Krieg, N. R., & Staley, J. T. (2005). Bergey’s manual of systematic bacteriology. In G. M. Garrity (Ed.), The Proteobacteria (Vol. 2, 2nd ed.). New York: Springer.

    Google Scholar 

  21. Guo, H., Chen, C., Lee, D.-J., Wang, A., & Ren, N. (2013). Sulfur–nitrogen–carbon removal of Pseudomonas sp. C27 under sulfide stress. Enzyme and Microbial Technology, 53(1), 6–12. https://doi.org/10.1016/J.ENZMICTEC.2013.04.002.

    Article  PubMed  CAS  Google Scholar 

  22. Mergaert, J., Cnockaert, M. C., & Swings, J. (2003). Thermomonas fusca sp. nov. and Thermomonas brevis sp. nov., two mesophilic species isolated from a denitrification reactor with poly(-caprolactone) plastic granules as fixed bed, and emended description of the genus Thermomonas. International Journal of Systematic and Evolutionary Microbiology, 53(6), 1961–1966. https://doi.org/10.1099/ijs.0.02684-0.

    Article  PubMed  CAS  Google Scholar 

  23. Keller, A. H., Kleinsteuber, S., & Vogt, C. (2018). Anaerobic benzene mineralization by nitrate-reducing and sulfate-reducing microbial consortia enriched from the same site: Comparison of community composition and degradation characteristics. Microbial Ecology, 75(4), 941–953. https://doi.org/10.1007/s00248-017-1100-1.

    Article  PubMed  CAS  Google Scholar 

  24. Dolinšek, J., Lagkouvardos, I., Wanek, W., Wagner, M., & Daims, H. (2013). Interactions of nitrifying bacteria and heterotrophs: Identification of a Micavibrio-like putative predator of Nitrospira spp. Applied and Environmental Microbiology, 79(6), 2027–2037. https://doi.org/10.1128/AEM.03408-12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Petropoulos, E., Dolfing, J., Yu, Y., Wade, M. J., Bowen, E. J., Davenport, R. J., & Curtis, T. P. (2018). Lipolysis of domestic wastewater in anaerobic reactors operating at low temperatures. Environmental Science: Water Research & Technology, 4(7), 1002–1013. https://doi.org/10.1039/C8EW00156A.

    Article  Google Scholar 

  26. Zhou, W., Li, Y., Liu, X., He, S., & Huang, J. C. (2017). Comparison of microbial communities in different sulfur-based autotrophic denitrification reactors. Applied Microbiology and Biotechnology, 101(1), 447–453. https://doi.org/10.1007/s00253-016-7912-y.

    Article  PubMed  CAS  Google Scholar 

  27. Krieg, N. R., Staley, J. T., Brown, D. R., Hedlund, B. P., Paster, B. J., Ward, N. L., et al. (2010). Bergey’s manual of systematic bacteriology. In G. M. Garrity (Ed.), The Bacterioidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Plantomycetes (Vol. 4, 2nd ed.). New York: Springer.

    Google Scholar 

  28. Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12(3), 168–180. https://doi.org/10.1038/nrmicro3182.

    Article  PubMed  CAS  Google Scholar 

  29. Fernandez, N., Sierra-Alvarez, R., Amils, R., Field, J. A., & Sanz, J. L. (2009). Compared microbiology of granular sludge under autotrophic, mixotrophic and heterotrophic denitrification conditions. Water Science and Technology, 59(6), 1227–1236. https://doi.org/10.2166/wst.2009.092.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The present study was funded by grant #2012/07375–7, and #2009/15984-0, São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagoberto Y. Okada.

Ethics declarations

Research Involving Human Participants and/or Animals

Not applicable

Informed Consent

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okada, D.Y., Costa, R.B., Garcia, C.d.C.B. et al. Anoxic Microbial Community Robustness Under Variation of Hydraulic Retention Time and Availability of Endogenous Electron Donors. Appl Biochem Biotechnol 192, 443–454 (2020). https://doi.org/10.1007/s12010-020-03327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03327-5

Keywords

Navigation