Skip to main content
Log in

Evaluation of Hydrothermal Pretreatment on Lignocellulose-Based Waste Furniture Boards for Enzymatic Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Three typical waste furniture boards, including fiberboard, chipboard, and blockboard, were pretreated with conventional hydrothermal method. The responses of chemical composition, physicochemical morphology, and performances of enzymatic hydrolysis were evaluated. Results indicated the almost complete hemicellulose removal at higher pretreatment temperatures, the enhanced crystallinity index, and disordered morphology of the pretreated substrates indicated that the hydrothermal pretreatment deconstructed these boards well. However, the very low enzymatic hydrolysis (< 8% after 72 h) of the pretreated substrates showed the poor biological conversion. Three hypotheses for the weakened enzymatic hydrolysis were investigated, and results indicated that the residual adhesives and their degraded fractions were mainly responsible for poor hydrolysis. When NaOH post-pretreatment was attempted, cellulose-glucose conversion of the hydrothermally pretreated fiberboard, chipboard and blockboard can be improved to 28.5%, 24.1%, and 37.5%. Herein, the process of NaOH hydrothermal pretreatment was integrated, by which the hydrolysis of pretreated fiberboard, chipboard and blockboard was greatly promoted to 47.1%, 37.3%, and 53.8%, suggesting a possible way to pretreat these unconventional recalcitrant biomasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Diao, G., & Cheng, B. (2013). Analysis on the dynamic relationship between the R&D capacity and trade of China’s furniture industry. International Conference on Management Science and Engineering, 1054–1061.

  2. Xiong, X., Guo, W., Fang, L., Zhang, M., Wu, Z., Lu, R., & Miyakoshi, T. (2017). Current state and development trend of Chinese furniture industry. Journal of Wood Science, 63(5), 433–444.

    Google Scholar 

  3. Nyemba, W. R., Hondo, A., Mbohwa, C., & Madiye, L. (2018). Unlocking economic value and sustainable furniture manufacturing through recycling and reuse of sawdust. Procedia Manufacturing, 21, 510–517.

    Google Scholar 

  4. Abdel-shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290.

    Google Scholar 

  5. Khosravi, S., Khabbaz, F., Nordqvist, P., & Johansson, M. (2014). Wheat-gluten-based adhesives for particle boards: Effect of crosslinking agents. Macromolecular Materials and Engineering, 299(1), 116–124.

    CAS  Google Scholar 

  6. Nam, S., Seo, J., Thriveni, T., & Ahn, J. (2012). Accelerated carbonation of municipal solid waste incineration bottom ash for CO2 sequestration. Geosystem Engineering, 15(4), 305–311.

    Google Scholar 

  7. Kim, S., Matsuto, T., & Tanaka, N. (2003). Evaluation of pre-treatment methods for landfill disposal of residues from municipal solid waste incineration. Waste Management & Research, 21(5), 416–423.

    CAS  Google Scholar 

  8. Rabl, A., Spadaro, J. V., & Zoughaib, A. (2008). Environmental impacts and costs of solid waste: A comparison of landfill and incineration. Waste Management & Research, 26(2), 147–162.

    CAS  Google Scholar 

  9. Halvarsson, S., Edlund, H., & Norgren, M. (2008). Properties of medium-density fibreboard (MDF) based on wheat straw and melamine modified urea formaldehyde (UMF) resin. Industrial Crops and Products, 28(1), 37–46.

    CAS  Google Scholar 

  10. Merrild, H., & Christensen, T. H. (2009). Recycling of wood for particle board production: Accounting of greenhouse gases and global warming contributions. Waste Management and Research, 27(8), 781–788.

    PubMed  CAS  Google Scholar 

  11. Raud, M., Tutt, M., Olt, J., & Kikas, T. (2015). Effect of lignin content of lignocellulosic material on hydrolysis efficiency. Agronomy Research, 13(2), 405–412.

    Google Scholar 

  12. Zhang, J., Ma, X., Yu, J., Zhang, X., & Tan, T. (2011). The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresource Technology, 102(6), 4585–4589.

    PubMed  CAS  Google Scholar 

  13. Cao, W., Sun, C., Liu, R., Yin, R., & Wu, X. (2012). Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresource Technology, 111, 215–221.

    PubMed  CAS  Google Scholar 

  14. Kelbert, M., Romaní, A., Coelho, E., Pereira, F. B., Teixeira, J. A., & Domingues, L. (2016). Simultaneous saccharification and fermentation of hydrothermal pretreated lignocellulosic biomass: Evaluation of process performance under multiple stress conditions. Bioenergy Research, 9(3), 750–762.

    CAS  Google Scholar 

  15. Chen, B., Zhao, B., Li, M., Liu, Q., & Sun, R. (2017). Fractionation of rapeseed straw by hydrothermal/dilute acid pretreatment combined with alkali post-treatment for improving its enzymatic hydrolysis. Bioresource Technology, 225, 127–133.

    PubMed  CAS  Google Scholar 

  16. Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(4), 522–550.

    CAS  Google Scholar 

  17. Ko, J. K., Um, Y., Park, Y.-C., Seo, J.-H., & Kim, K. H. (2015). Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Applied Microbiology and Biotechnology, 99(10), 4201–4212.

    PubMed  CAS  Google Scholar 

  18. Imman, S., Arnthong, J., Burapatana, V., Champreda, V., & Laosiripojana, N. (2014). Influence of alkaline catalyst addition on compressed liquid hot water pretreatment of rice straw. Chemical Engineering Journal, 278, 85–91.

    Google Scholar 

  19. Imman, S., Laosiripojana, N., & Champreda, V. (2018). Effects of liquid hot water pretreatment on enzymatic hydrolysis and physicochemical changes of corncobs. Applied Biochemistry and Biotechnology, 184(2), 432–443.

    PubMed  CAS  Google Scholar 

  20. Pei, L., Tang, Y., Chen, Y., Guo, C., Zhang, W., & Zhang, Y. (2006). Silicon nanowires grown from silicon monoxide under hydrothermal conditions. Journal of Crystal Growth, 289(2), 423–427.

    CAS  Google Scholar 

  21. Zakaria, M. R., Norrrahim, M. N. F., Hirata, S., & Hassan, M. A. (2015). Hydrothermal and wet disk milling pretreatment for high conversion of biosugars from oil palm mesocarp fiber. Bioresource Technology, 181, 263–269.

    PubMed  CAS  Google Scholar 

  22. Grisel, R. J. H., Van Der Waal, J. C., De Jong, E., & Huijgen, W. J. J. (2014). Acid catalysed alcoholysis of wheat straw: Towards second generation furan-derivatives. Catalysis Today, 223, 3–10.

    CAS  Google Scholar 

  23. Yoon, S.-Y., Han, S.-H., & Shin, S.-J. (2014). The effect of hemicelluloses and lignin on acid hydrolysis of cellulose. Energy, 77(1), 19–24.

    CAS  Google Scholar 

  24. Nitsos, C. K., Choli-Papadopoulou, T., Matis, K. A., & Triantafyllidis, K. S. (2016). Optimization of hydrothermal pretreatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis. ACS Sustainable Chemistry and Engineering, 4(9), 4529–4544.

    CAS  Google Scholar 

  25. Fernández-Cegrí, V., Ángeles De la Rubia, M., Raposo, F., & Borja, R. (2012). Effect of hydrothermal pretreatment of sunflower oil cake on biomethane potential focusing on fibre composition. Bioresource Technology, 123, 424–429.

    PubMed  Google Scholar 

  26. Li, M., Chen, C., & Sun, R. (2014). Effect of pretreatment severity on the enzymatic hydrolysis of bamboo in hydrothermal deconstruction. Cellulose, 21(6), 4105–4117.

    CAS  Google Scholar 

  27. Ko, J. K., Kim, Y., Ximenes, E., & Ladisch, M. R. (2015). Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 112(2), 252–262.

    PubMed  CAS  Google Scholar 

  28. Sun, S., Huang, Y., Sun, R., & Tu, M. (2016). Strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chemistry, 18(15), 4276–4286.

    CAS  Google Scholar 

  29. Yu, Q., Zhuang, X., Yuan, Z., Wang, Q., Qi, W., Wang, W., Zhang, Y., Xu, J., & Xu, H. (2010). Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresource Technology, 101(13), 4895–4899.

    PubMed  CAS  Google Scholar 

  30. Zakaria, M. R., Hirata, S., & Hassan, M. A. (2015). Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass. Bioresource Technology, 176, 142–148.

    PubMed  CAS  Google Scholar 

  31. Boonsombuti, A., Luengnaruemitchai, A., & Wongkasemjit, S. (2013). Enhancement of enzymatic hydrolysis of corncob by microwave-assisted alkali pretreatment and its effect in morphology. Cellulose, 20(4), 1957–1966.

    CAS  Google Scholar 

  32. Zhang, H., Xu, S., & Wu, S. (2013). Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresource Technology, 143, 391–396.

    CAS  Google Scholar 

  33. Zhao, X., Zhang, L., & Liu, D. (2012). Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining, 6(4), 465–482.

    CAS  Google Scholar 

  34. Brethauer, S., Studer, M. H., Yang, B., & Wyman, C. E. (2011). The effect of bovine serum albumin on batch and continuous enzymatic cellulose hydrolysis mixed by stirring or shaking. Bioresource Technology, 102(10), 6295–6298.

    PubMed  CAS  Google Scholar 

  35. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18.

    PubMed  CAS  Google Scholar 

  36. Alriksson, B., Sjöde, A., Nilvebrant, N.-O., & Jönsson, L. J. (2006). Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Applied Biochemistry and Biotechnology, 129–132(1–3), 599–611.

    PubMed  Google Scholar 

  37. Subhedar, P. B., & Gogate, P. R. (2014). Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrasonics Sonochemistry, 21(1), 216–225.

    PubMed  CAS  Google Scholar 

  38. Zheng, Q., Zhou, T., Wang, Y., Cao, X., Wu, S., Zhao, M., Wang, H., Xu, M., Zheng, B., Zheng, J., & Guan, X. (2018). Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Scientific Reports, 8(1), 1321.

    PubMed  PubMed Central  Google Scholar 

  39. Yue, Z., Economy, J., & Bordson, G. (2006). Preparation and characterization of NaOH-activated carbons from phenolic resin. Journal of Materials Chemistry, 16(15), 1456–1461.

    CAS  Google Scholar 

  40. Castellano, J. M., Gómez, M., Fernández, M., Esteban, L. S., & Carrasco, J. E. (2015). Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel, 139, 629–636.

    CAS  Google Scholar 

  41. Li, Z., Yu, Y., Sun, J., Li, D., Huang, Y., & Feng, Y. (2016). Effect of extractives on digestibility of cellulose in corn Stover with liquid hot water pretreatment. Bioresources, 11(1), 54–70.

    CAS  Google Scholar 

  42. Romaní, A., Tomaz, P. D., Garrote, G., Teixeira, J. A., & Domingues, L. (2016). Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept. Bioresource Technology, 220, 323–332.

    PubMed  Google Scholar 

  43. Sun, S., Zhang, L., Liu, F., Fan, X., & Sun, R. (2018). One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification. Biotechnology for Biofuels, 11(1), 137.

    PubMed  PubMed Central  Google Scholar 

  44. Wilkinson, S., Smart, K. A., & Cook, D. J. (2014). A comparison of dilute acid- and alkali-catalyzed hydrothermal pretreatments for bioethanol production from Brewers’ spent grains. Journal of the American Society of Brewing Chemists, 72(2), 143–153.

    CAS  Google Scholar 

Download references

Acknowledgments

Thanks for the Analytical & Testing Center in Sichuan University for the technical supports on SEM and XRD analysis.

Funding

This work was supported by the National Natural Science Foundation of China (grant number 21978183).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: F.S.; methodology: J.Z. and D.T.; formal analysis and investigation: J.Z.; writing—original draft preparation: J.Z., and D.T.; writing—review and editing: J.H. and F.S.; funding acquisition: F.S.; supervision: F.S; resources, Y.Z., C.H., G.Y., L.L., and S.D.

Corresponding author

Correspondence to Fei Shen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 888 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Tian, D., Hu, J. et al. Evaluation of Hydrothermal Pretreatment on Lignocellulose-Based Waste Furniture Boards for Enzymatic Hydrolysis. Appl Biochem Biotechnol 192, 415–431 (2020). https://doi.org/10.1007/s12010-020-03315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03315-9

Keywords

Navigation