Skip to main content
Log in

An Innovator Support Material for Tyrosinase Immobilization: Antimony-Doped Tin Oxide Thin Films (ATO-TF)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tyrosinase (T3824, Sigma) enzymes were immobilized onto SnO2: Sb thin films (ATO-TF) which were synthesized in laboratory conditions by spray pyrolysis technique. Immobilization of tyrosinase onto SnO2: Sb thin film (ATO-TF) was confirmed by scanning electron microscopy (SEM) and Fourier transformed infrared spectroscopy (FTIR). The optimum pH of the immobilized tyrosinase (tyrosinase-ATO-TF) was 6.0, and the optimum temperature was found to be 30 °C. In the presence of catechol substrate of immobilized enzymes, Km and Vmax values were determined as 0.34 mM and 312.5 U/cm2 min, respectively. The thermal stabilities of the immobilized tyrosinase at 4 °C and 30 °C were investigated for 20, 40, and 60 min. At these temperatures and time intervals, the immobilized tyrosinase was found to be highly stable. The pH stability of the immobilized tyrosinase enzymes was incubated for 24, 48, 72, and 96 h at 4 °C temperature. The enzyme activity was determined under optimum conditions, and the activity of the immobilized tyrosinase enzymes exhibited various values for the range of pH 3.0–8.0. The storage stability of the immobilized tyrosinase enzymes at 4 °C was investigated, and 45.72% of the initial activity was maintained at the end of the seventh day. Furthermore, the reusability of the immobilized tyrosinase enzymes has been examined. The immobilized tyrosinase enzymes can be used 3 times and survived their 50% of initial activity. The ATO-TF can be used as alternative support materials for the immobilization of tyrosinase enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumar, V. B. A., Mohan, T. C. K., & Murugan, K. (2008). Purification and kinetic characterization of polyphenol oxidase from Barbados cherry (Malpighia glabra L.). Food Chemistry, 110(2), 328–333. https://doi.org/10.1016/j.foodchem.2008.02.006.

    Article  PubMed  CAS  Google Scholar 

  2. Özen, A., Colak, A., Dincer, B., & Güner, S. (2004). A diphenolase from persimmon fruits (Diospyros kaki L., Ebenaceae). Food Chemistry, 85(3), 431–437. https://doi.org/10.1016/j.foodchem.2003.07.022.

    Article  CAS  Google Scholar 

  3. Özel, A., Colak, A., Arslan, O., & Yildirim, M. (2010). Purification and characterisation of a polyphenol oxidase from Boletus erythropus and investigation of its catalytic efficiency in selected organic solvents. Food Chemistry, 119(3), 1044–1049. https://doi.org/10.1016/j.foodchem.2009.08.011.

    Article  CAS  Google Scholar 

  4. Kolcuoğlu, Y. (2012). Purification and comparative characterization of monophenolase and diphenolase activities from a wild edible mushroom (Macrolepiota gracilenta). Process Biochemistry, 47(12), 2449–2454. https://doi.org/10.1016/j.procbio.2012.10.008.

    Article  CAS  Google Scholar 

  5. Telefoncu, A. (1997). İmmobilize Enzimler. Enzimoloji Lisansüstü Yaz Okulu, Kuşadası Aydın, 446s.

  6. Munjal, N., & Sawhney, S. K. (2002). Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzyme and Microbal Technology, 30(5), 613–619. https://doi.org/10.1016/s0141-0229(02)00019-4.

    Article  CAS  Google Scholar 

  7. Kafi, A. K. M., Wali, Q., Jose, R., Kumar-Biswas, T., & Yusoff, M. M. (2017). A glassy carbon electrode modified with SnO2 nanofibers, polyaniline and hemoglobin for improved amperometric sensing of hydrogen peroxide. Microchimica Acta, 184(11), 4443–4450. https://doi.org/10.1007/s00604-017-2479-6.

    Article  CAS  Google Scholar 

  8. Battal, A., Tatar, D., Kocyigit, A., & Duzgun, B. (2015). Effect of substrate temperature on some properties doubly doped tin oxide thin films deposited by using spray pyrolysis. Materials Focus, 4(6), 445–456. https://doi.org/10.1166/mat.2015.1281.

    Article  CAS  Google Scholar 

  9. Zhang, D., Deng, Z., Zhang, J., & Chen, L. (2006). Microstructure and electrical properties of antimony- doped tin oxide thin film deposited. Materials Chemistry and Physics, 98(2-3), 353–357. https://doi.org/10.1016/j.matchemphys.2005.09.038.

    Article  CAS  Google Scholar 

  10. Outemzabet, R., Bouras, N., & Kesri, N. (2007). Microstructure and physical properties of nanofaceted antimony doped tin oxide thin films deposited by chemical vapor deposition on different substrates. Thin Solid Films, 515(16), 6518–6520. https://doi.org/10.1016/j.tsf.2006.11.069.

    Article  CAS  Google Scholar 

  11. Kim, H., Auyeung, R. C. Y., & Piqué, A. (2008). Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition. Thin Solid Films, 516(15), 5052–5056. https://doi.org/10.1016/j.tsf.2007.11.079.

    Article  CAS  Google Scholar 

  12. Gu, B. X., Xu, C. X., Zhu, G. P., Liu, S. Q., Chen, L. Y., & Li, X. S. (2009). Tyrosinase immobilization on ZnO nanorods for phenol detection. The Journal of Physical Chemistry B, 113, 377–381. https://doi.org/10.1021/jp808001c.

    Article  PubMed  CAS  Google Scholar 

  13. Yaropolov, A. I., Kharybin, A. N., Emneus, J., Marko-Varga, G., & Gorton, L. (1995). Flow-injection analysis of phenols at a graphite electrode modified with co-immobilized laccase and tyrosinase. Analytica Chimica Acta, 308, 137–144. https://doi.org/10.1016/0003-2670(94)00404-A.

    Article  CAS  Google Scholar 

  14. Stambouli, V., Labeau, M., Matko, I., Chenevier, B., Renault, O., Guiducci, C., Chaudouet, P., Roussel, H., Nibkin, D., & Dupuis, E. (2006). Development and functionalisation of Sb doped SnO2 thin films for DNA biochipapplications. Sensors and Actuators B: Chemical, 113(2), 1025–1033. https://doi.org/10.1016/j.snb.2005.03.108.

    Article  CAS  Google Scholar 

  15. Stambouli, V., Zebda, A., Appert, E., Guiducci, C., Labeau, M., Diard, J. P., Le-Gorrec, B., Brack, N., & Pigram, P. J. (2006). Semi-conductor oxide based electrodes for the label-free electrical detection of DNAhybridization: comparison between Sb doped SnO2 and CdIn2O4. Electrochimica Acta, 51(24), 5206–5214. https://doi.org/10.1016/j.electacta.2006.03.045.

    Article  CAS  Google Scholar 

  16. Reipa, V., Mayhew, M. P., & Vilker, V. L. (1997). A direct electrode-driven P450 cycle for biocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 94, 13554–13558. https://doi.org/10.1073/pnas.94.25.13554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kwan, P., Schmitt, D., Volosin, A. M., McIntosh, C. L., Seo, D. K., & Jones, A. K. (2011). Spectroelectrochemistry of cytochrome c and azurin immobilized innanoporous antimony-doped tin oxide. Chemical Communications, 47(45), 12367–12369.

    Article  CAS  Google Scholar 

  18. Frasca, S., Milan, A. M., Guiet, A., Goebel, C., Pérez Caballero, F., Stiba, K., Leimkühler, S., Fischer, A., & Wollenberger, U. (2013). Bioelectrocatalysis at mesoporous antimony doped tin oxideelectrodes—electrochemical characterization and direct enzyme communication. Electrochimica Acta, 110, 172–180. https://doi.org/10.1016/j.electacta.2013.03.144.

    Article  CAS  Google Scholar 

  19. Turkhan, A., Faiz, O., Kaya, E. D., & Kocyigit, A. (2018). Immobilization of polyphenol oxidase enzyme on new matrix antimony doped tin oxide (SnO2:Sb) thin film. Fresenius Enviromental Bulletin, 27, 4844–4856.

    CAS  Google Scholar 

  20. Ates, S., Cortenlioglu, E., Bayraktar, E., & Mehmetoglu, U. (2007). Production of L-DOPA using Cu-alginate gel immobilized tyrosinase in a batch and packed bed reactor. Enzyme and Microbial Technology, 40(4), 683–687. https://doi.org/10.1016/j.enzmictec.2006.05.031.

    Article  CAS  Google Scholar 

  21. Kocatürk, S. (2008). Enginar polifenol oksidazının alginat ve karragenan jellerde immobilizasyonu ve bazı biyokimyasal özelliklerinin incelenmesi. Yüksek Lisans Tezi. Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Edirne.

  22. Terrier, C., Chatelon, J. P., & Roger, J. A. (1997). Electrical and optical properties of Sb:SnO2 thin films obtained by the sol-gel method. Thin Solid Films, 295, 95–100. https://doi.org/10.1016/S0040-6090(96)09324-8.

    Article  CAS  Google Scholar 

  23. Ravichandran, K., Muruganantham, G., & Sakthivel, B. (2009). Highly conducting and crystalline doubly doped tin oxide films fabricated using a low-cost and simplified spray technique. Physica B: Condensed Matter, 404(21), 4299–4302. https://doi.org/10.1016/j.physb.2009.08.017.

    Article  CAS  Google Scholar 

  24. Onem, H., & Nadaroglu, H. (2014). Preparation and properties of purified phytase from oakbug milkcap (Lactarius quietus) immobilised on coated chitosan with iron nano particles and investigation of its usability in food industry. Journal of Food and Nutrition Research, 2, 938–945. https://doi.org/10.12691/jfnr-2-12-13.

    Article  Google Scholar 

  25. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  PubMed  CAS  Google Scholar 

  26. Espin, J. C., Morales, M., Varon, R., Tudela, J., & Garcia-Canovas, F. (1995). A continuous spectrophotometric method for determining the monophenolase and diphenolase activities of apple polyphenol oxidase. Analytical Biochemistry, 43(1), 2807–2812. https://doi.org/10.1006/abio.1995.1526.

    Article  CAS  Google Scholar 

  27. Kolcuoğlu, Y., Kuyumcu, İ., & Colak, A. (2018). A catecholase from Laccaria laccata a wild edible mushroomand its catalytic efficiency in organic media. Journal of Food Biochemistry, 1–11. https://doi.org/10.1111/jfbc.12605.

  28. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658–666. https://doi.org/10.1021/ja01318a036.

    Article  CAS  Google Scholar 

  29. Arıca, M. Y., Bayramoğlu, G., & Bıçak, N. (2004). Characterisation of tyrosinase immobilised onto spacer-arm attached glycidyl methacrylatebased reactive microbeads. Process Biochemistry, 39(12), 2007–2017. https://doi.org/10.1016/j.procbio.2003.09.030.

    Article  CAS  Google Scholar 

  30. Milani, M. M., Lofti, A. S., Mohsenifar, A., Mikaili, P., Kamelipour, N., & Dehghan, J. (2015). Enhancing organophosphorus hydrolase stability by immobilization on chitosan beads containing glutaraldehyde. Research Journal of Environmental Toxicology, 9(1), 34–44. https://doi.org/10.3923/rjet.2015.34.44.

    Article  CAS  Google Scholar 

  31. Zhang, B., Tian, Y., Zhang, J. X., & Cai, W. (2010). Structural, optical, electrical properties and FTIR studies of fluorine doped SnO2 films deposited by spray pyrolysis. Journal of Materials Science, 46(6), 1884–1889. https://doi.org/10.1007/s10853-010-5021-3.

    Article  CAS  Google Scholar 

  32. Kampmann, M., Hoffrichter, A. C., Stalinski, D., & Wichmann, R. (2015). Kinetic characterization of tyrosinase containing mushroom(Agaricus bisporus) cells immobilized in silica alginate. Journal of Molecular Catalysis B: Enzymatic, 116, 124–133. https://doi.org/10.1016/j.molcatb.2015.03.013.

    Article  CAS  Google Scholar 

  33. Donato, L., Algieri, C., Rizzi, A., & Giorno, L. (2014). Kinetic study of tyrosinase immobilized on polymeric membrane. Journal of Membrane Science, 454, 346–350. https://doi.org/10.1016/j.memsci.2013.12.029.

    Article  CAS  Google Scholar 

  34. Dinçer, A., Becerik, S., & Aydemir, T. (2012). Immobilization of tyrosinase on chitosan–clay composite beads. International Journal of Biological Macromolecules, 50(3), 815–820. https://doi.org/10.1016/j.ijbiomac.2011.11.020.

    Article  PubMed  CAS  Google Scholar 

  35. Harir, M., Bellahcene, M., Baratto, M. C., Pollini, S., Rossolini, G. M., Trabalzini, L., Fatarella, E., & Pogni, R. (2018). Isolation and characterization of a novel tyrosinase produced by Sahara soil actinobacteria and immobilization on nylon nanofiber membranes. Journal of Biotechnology, 26, 54–64. https://doi.org/10.1016/j.jbiotec.2017.11.004.

    Article  CAS  Google Scholar 

  36. Abdollahi, K., Yazdani, F., & Panahi, R. (2017). Covalent immobilization of tyrosinase onto cyanuric chloridecrosslinked amine-functionalized superparamagnetic nanoparticles:synthesis and characterization of the recyclable nanobiocatalyst. International Journal of Biological Macromolecules, 94(Pt A), 396–405. https://doi.org/10.1016/j.ijbiomac.2016.10.058.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşe Türkhan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval and Informed Consent

This article does not contain any studies involving human participants and/or Animals performed by any of the authors. Informed consent was obtained from all participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Türkhan, A., Kaya, E.D. & Koçyiğit, A. An Innovator Support Material for Tyrosinase Immobilization: Antimony-Doped Tin Oxide Thin Films (ATO-TF). Appl Biochem Biotechnol 192, 432–442 (2020). https://doi.org/10.1007/s12010-020-03337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03337-3

Keywords

Navigation