Skip to main content
Log in

Design and Analysis of Triple-Band Rectangular Microstrip Antenna Loaded with Notches and Slots for Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a rectangular triple-band microstrip antenna has been designed for Bluetooth application by successively loading notches and slots of different dimension in radiating patch. The conventional microstrip antenna suffers with narrow impedance bandwidth. The current work affords an alternate option to enhance the bandwidth of antenna that resonates in triple-band operation. Initially, the antenna is resonating in single-band but after loading slots, the bandwidth of microstrip antenna has been obtained 1.97% (lower band), 10.35% (middle band) and 33.16% (upper band) resonating in triple-band with three resonant frequency at 1.422 GHz (lower resonant frequency), 1.791 GHz (middle resonant frequency) and 2.467 GHz (higher resonant frequency). The suggested antenna has upper frequency band in the range of 2.045–2.858 GHz resonating at 2.467 GHz frequency and it is appropriate for Bluetooth applications (2.40–2.48 GHz) and both lower band useful for other wireless (L-band) applications. The return loss of upper band is − 34.52 dB at 2.467 GHz. The suggested microstrip antenna is directly fed by 50 ohm microstrip line feed. The suggested antenna has been designed, simulated and analyzed by IE3D simulation software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Pozar, D. M. (1992). Microstrip antennas. Proceeding of the IEEE, 40(1), 79–91.

    Article  Google Scholar 

  2. Balanis, C. A. (2005). Antenna theory, analysis and design. Hoboken, NJ: Wiley.

    Google Scholar 

  3. Saroj, A. K., Siddiqui, M. G., Kumar, M., & Ansari, J. A. (2017). Design of multiband quad-rectangular shaped microstrip antenna for wireless applications. Progress in Electromagnetics Research, 59, 213–221.

    Article  Google Scholar 

  4. Zhai, H., Ma, Z., Han, Y., & Liang, C. (2013). A compact printed antenna for triple-band WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 12(1921), 65–68.

    Article  Google Scholar 

  5. Chen, W. F., Yu, D., & Gong, S. X. (2015). An omnidirectional triple-band circular patch antenna based on open elliptical-ring slots and the shorting vias. Progress in Electromagnetics Research, 150, 197–203.

    Article  Google Scholar 

  6. Chakraborty, U. (2014). Compact dual-band microstrip antenna for IEEE 802.11a WLAN application. IEEE Antenna and Wireless Propagation, 13, 407–410.

    Article  Google Scholar 

  7. Roy, A., & Bhunia, S. (2012). Compact broad band dual frequency slot loaded microslot patch antenna with defecting ground plane for WI-MAX and WLAN. International Journal of Soft Computing and Engineering, 1(6), 154–157.

    Google Scholar 

  8. Hu, C. L., Yang, C. F., & Lin, S. T. (2011). A compact inverted-F antenna to be embedded in ultra-thin laptop computer for LTE/WWAN/WI-MAX/WLAN applications. In IEEE Conferences (pp. 426–429).

  9. Kumar, P., Dwari, S., & Bakariya, P. S. (2017). Tripple-band microstrip antenna for wireless application. Wireless Personal Communications, 96(1), 1029–1037.

    Article  Google Scholar 

  10. Khajepour, S., Ghaffarian, M. S., & Moradi, G. (2017). Design of novel multiband folded printed quadrifilar helical antenna for GPS/WLAN applications. IEEE Electronics Letters, 53(2), 58–60.

    Article  Google Scholar 

  11. Ren, X., Gao, S., & Yin, Y. (2015). Compact tri-band monopole antenna with hybrid strips for WLAN/WIMAX applications. Microwave and Optical Technology Letters, 57(1), 94–99.

    Article  Google Scholar 

  12. Bakariya, P. S., Dwari, S., Sarkar, M., & Mandal, M. K. (2015). Proximity coupled multiband microstrip antenna for wireless applications. IEEE Antennas and Wireless Propagation Letters, 14, 646–649.

    Article  Google Scholar 

  13. Jang, T. H., Kim, H. Y., Song, I. S., Lee, C. J., Lee, J. H., & Park, C. S. (2016). A wideband aperture efficient 60-GHz series-fed E-shaped patch antenna array with co-polarized parasitic patches. IEEE Transactions on Antennas and Propagation, 64(12), 5518–5521.

    Article  Google Scholar 

  14. Tran, H. H., Park, I., & Nguyen, T. K. (2017). Circularly polarized bandwidth-enhanced crossed dipole antenna with a simple single parasitic element. IEEE Antennas and Wireless Propagation Letters, 16, 1776–1779.

    Article  Google Scholar 

  15. Zhang, X., & Zhu, L. (2016). Gain-enhanced patch antennas with loading of shorting pins. IEEE Transactions on Antennas and Propagation, 64(8), 3310–3318.

    Article  MathSciNet  Google Scholar 

  16. Xue, W., Xiao, M., Sun, G., & Xu, F. (2016). A compact low-profile and quad-band antenna with three different shaped slots. Progress in Electromagnetics Research, 70, 43–51.

    Article  Google Scholar 

  17. Singh, A., Aneesh, M., Kamakshi, K., Mishra, A., & Ansari, J. A. (2014). Analysis of F-shape microstrip line fed dualband antenna for WLAN applications. Wireless Network, 20(1), 133–140.

    Article  Google Scholar 

  18. Surjati, I., Yuli, K. N., & Yuliastuti, (2010). Increasing bandwidth dual frequency triangular microstrip antenna for WiMAX application. International Journal of Electrical & Computer Sciences IJECS-IJENS, 10(6), 16–20.

    Google Scholar 

  19. Chen, C., Guo, Y., & Wang, H. (2014). Wideband symmetrical cross-shaped probe dual-beam microstrip patch antenna. IEEE Antennas and Wireless Propagation Letters, 14, 622–625.

    Article  Google Scholar 

  20. IE3D Electromagnetic Simulation and Optimization Package, Version 9.0.

  21. Rop, K. V., Konditi, D. B. O., Ouma, H. A., & Musyoki, S. M. (2012). Parameter optimization in design of a rectangular microstrip patch antenna using adaptive neuro-fuzzy inference system technique. International Journal on “Technical and Physical Problems of Engineering, 4(12), 16–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Kumar Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R.K., Srivastava, D.K. Design and Analysis of Triple-Band Rectangular Microstrip Antenna Loaded with Notches and Slots for Wireless Applications. Wireless Pers Commun 114, 1847–1864 (2020). https://doi.org/10.1007/s11277-020-07452-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07452-6

Keywords

Navigation