Skip to main content
Log in

The Superconductivity Mechanism in Nd-1111 Iron-Based Superconductor Doped by Calcium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We describe the effect of nonmagnetic impurity on the superconductivity behavior of the NdFeAsO0.8F0.2 iron-based superconductor. The resistivity measurements show that the superconductivity is suppressed upon increasing the low amounts of calcium impurity (x ≤ 0.05). Also, the TC decreases with the increase in the residual resistivity. Such behavior is qualitatively described by the Abrikosov–Gorkov theory and confirms that these impurities act as scattering centers. Moreover, we present the phase diagram of our synthesized samples for the various calcium dopings. We find that according to the increase in the calcium impurities and the decrease in the spin-density wave transition tempeθrature (TSDW), Fe ions are arranged stripe-antiferromagnetic at lower temperatures and also the superconducting transition temperature (TC) declines. Based on our results and in agreement with the available theories as is explained in the text, since the S++ state has no effect on the impurity-doped samples, and for low amounts of calcium, the S± state that is attributed to the spin-fluctuations causes the superconductivity suppression. So, it confirms the role of the spin-fluctuations as a dominant pairing mechanism in our synthesized samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Kamihara, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006)

    Google Scholar 

  2. N.L. Wang, H. Hosono, P. Dai, Iron Based Superconductor: Materials, Properties and Mechanisms, 1st edn. (CRC Press, Boca Raton, 2012), pp. 1–20

    Google Scholar 

  3. N. Fujiwara, S. Tsutsumi, S. Iimura, S. Matsuishi, H. Hossono, Y. Yamakawa, H. Kontani, Phys. Rev. Lett. 111, 097002 (2013)

    ADS  Google Scholar 

  4. K. Gofryk, B. Saparov, T. Durakiewicz, A. Chikina, S. Danzenbacher, D.V. Vyalikh, M.J. Graf, A.S. Sefat, Phys. Rev. Lett. 112, 186401 (2014)

    ADS  Google Scholar 

  5. H. Hosono, K. Kuroki, Physica C 514, 399 (2015)

    ADS  Google Scholar 

  6. M. Calamiotou, D. Lampakis, N.D. Zhigadlo, S. Katrych, J. Karpinski, A. Fitch, P. Tsiaklagkanos, E. Liarokapis, Physica C 527, 55 (2016)

    ADS  Google Scholar 

  7. V. Stanev, J. Kang, Z. Tesanovic, Phys. Rev. B 78, 184509 (2008)

    ADS  Google Scholar 

  8. A.V. Chubukov, M. Khodas, R.M. Fernandes, Phys. Rev. X 6, 041045 (2016)

    Google Scholar 

  9. P.C. Canifield, S.L. Bud’ko, Annu. Rev. Condens. Matter Phys. 1, 27 (2010)

    ADS  Google Scholar 

  10. S. Matsuishi, T. Hanna, Y. Muraba, S.W. Kim, J.E. Kim, M. Takata, S. Shamoto, R.I. Smith, H. Hosono, Phys. Rev. B 85, 014514 (2012)

    ADS  Google Scholar 

  11. K. Hayashi, P.V. Sushko, Y. Hashimoto, A.L. Shluger, H. Hosono, Nat. Commun. 5, 3515 (2014)

    ADS  Google Scholar 

  12. H. Hosono, S. Matsuishi, Current Opinion Sol. State Mat. Sci. 17, 49 (2013)

    ADS  Google Scholar 

  13. C. Fang, H. Yao, W.F. Tsai, J.P. Hu, S.A. Kivelson, Phys. Rev. B 77, 224509 (2008)

    ADS  Google Scholar 

  14. T. Yildirim, Phys. Rev. Lett. 102, 037003 (2009)

    ADS  Google Scholar 

  15. V. Chubukov, D.V. Efremov, I. Eremin, Phys. Rev. B 78, 134512 (2008)

    ADS  Google Scholar 

  16. F. Kruger, S. Kumar, J. Zaanen, J. van den Brink, Phys. Rev. B 79, 054504 (2009)

    ADS  Google Scholar 

  17. C. Chen, B. Moritz, J. van den Brink, T.P. Devereaux, R.R.P. Singh, Phys. Rev. B 80, 180418 (2009)

    ADS  Google Scholar 

  18. W. Lv, J. Wu, P. Phillips, Phys. Rev. B 80, 224506 (2009)

    ADS  Google Scholar 

  19. I. Eremin, J. Knolle, R.M. Fernandes, J. Schmalian, A.V. Chobokov, J. Phys. Soc. Jpn. 83, 061015 (2014)

    ADS  Google Scholar 

  20. R.M. Fernandes, A.V. Chobokov, J. Schmalian, Nat. Phys. 10, 97 (2014)

    Google Scholar 

  21. K. Kuroki, H. Usui, S. Onari, R. Arita, H. Aoki, Phys. Rev. B 79, 224511 (2009)

    ADS  Google Scholar 

  22. K. Kuroki, Physica C 470, S267 (2010)

    ADS  Google Scholar 

  23. W. Ly, F. Kruger, P. Phillips, Phys. Rev. B 82, 045125 (2010)

    ADS  Google Scholar 

  24. T. Yamada, J. Ishizuka, Y. Ono, J. Phys. Soc. Jpn. 83, 043704 (2014)

    ADS  Google Scholar 

  25. S. Onari, H. Kontani, Phys. Rev. Lett. 109, 137001 (2012)

    ADS  Google Scholar 

  26. I.I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du, Phys. Rev. Lett. 101, 057003 (2008)

    ADS  Google Scholar 

  27. K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, H. Aoki, Phys. Rev. Lett. 101, 087004 (2008)

    ADS  Google Scholar 

  28. R.M. Fernandes, A.V. Chobukov, J. Knolle, I. Eremin, J. Schmalain, Phys. Rev. B 85, 024534 (2012)

    ADS  Google Scholar 

  29. H. Kontani, T. Saito, S. Onari, Phys. Rev. B 84, 024528 (2011)

    ADS  Google Scholar 

  30. H. Kontani, S. Onari, Phys. Rev. Lett. 104, 157001 (2010)

    ADS  Google Scholar 

  31. Y. Yanagi, Y. Yamakawa, Y. Ono, Phys. Rev. B 81, 054518 (2010)

    ADS  Google Scholar 

  32. Y. Yanagi, Y. Yamakawa, N. Adachi, Y. Ono, Phys. Rev. B 82, 064518 (2011)

    ADS  Google Scholar 

  33. S. Onari, H. Kontani, Phys. Rev. Lett. 103, 177001 (2009)

    ADS  Google Scholar 

  34. H. Kontani, Y. Inoue, T. Saito, Y. Yamakawa, S. Onari, Solid State Commun. 152, 718 (2012)

    ADS  Google Scholar 

  35. T. Saito, S. Onari, Y. Yakamawa, H. Kontani, S.V. Borisenko, V.B. Zabolotnyy, Phys. Rev. B 90, 035104 (2014)

    ADS  Google Scholar 

  36. D. Parker et al., Phys. Rev. B 78, 134524 (2008)

    ADS  Google Scholar 

  37. Y. Bang, H. Choi, H. Won, Phys. Rev. B 79, 054529 (2009)

    ADS  Google Scholar 

  38. T. Kariyado, M. Ogata, J. Phys. Soc. Jpn. 79, 083704 (2010)

    ADS  Google Scholar 

  39. A.F. Wang, J.J. Pin, P. Cheng, G.J. Ye, F. Chen, J.Q. Ma, X.F. Lu, B. Lei, X.G. Luo, X.H. Chen, Phys. Rev. B 88, 094516 (2013)

    ADS  Google Scholar 

  40. P. Cheng, B. Shen, F. Han, H. Wen, EPL 104, 37007 (2013)

    ADS  Google Scholar 

  41. M. Sato, Y. Kobayashi, S.C. Lee, H. Takahashi, E. Satomi, Y. Miura, J. Phys. Soc. Jpn. 79, 014710 (2010)

    ADS  Google Scholar 

  42. J. Li, Y. Guo, S. Zhang, S. Yu, Y. Tsujimoto, H. Kontani, K. Yamaura, E. Takayama, Phys. Rev. B 84, 020513(R) (2011)

    ADS  Google Scholar 

  43. P.F.S. Rosa, C. Adriano, T.M. Garietezi, M.M. Piva, K. Mydeen, T. Grant, Z. Fisk, M. Nicklas, Sci. Rep. 4, 6252 (2014)

    Google Scholar 

  44. J. Ishida, S. Limura, S. Matsuishi, H. Hosono, Phys. Condens. Matter. 26, 435702 (2014)

    ADS  Google Scholar 

  45. F. ShahbazTehrani, V. Daadmehr, J. Supercond. Nov. Magn 32(6), 1497 (2019). https://doi.org/10.1007/s10948-019-05197-3

    Article  Google Scholar 

  46. Z. Alborzi, V. Daadmehr, Physica C 549, 116 (2018)

    ADS  Google Scholar 

  47. Z. Alborzi, V. Daadmehr, J. Supercond. Nov. Magn. (2019). https://doi.org/10.1007/s10948-019-05209-2

    Article  Google Scholar 

  48. A.A. Abrikosov, L.P. Gorkov, Sov. Phys. JETP 12, 1243 (1961)

    Google Scholar 

  49. A.A. Abrikosov, Sov. Phys. Uspekhi 12, 168 (1969)

    ADS  Google Scholar 

  50. P. Fulde, Mod. Phys. Lett. B 24, 2601 (2010)

    ADS  Google Scholar 

  51. S.K. Malik, C.V. Tomy, P. Bhargava, Phys. Rev. B 44, 7042 (1991)

    ADS  Google Scholar 

  52. A. Tavana, PhD. Thesis, Sharif university, Iran (2010)

  53. P.G. Pagliuso, C. Rettori, S.B. Oseroff, P.C.C. Canfield, E.M. Baggio, D. Sanchez, Phys. Rev. B 57, 3668 (1998)

    ADS  Google Scholar 

  54. E.M. Bittel, C. Adriano, C. Giles, C. Rettori, Z. Fisk, P.G. Pagliuso, J. Phys.: Cond. Matt. 23, 455701 (2011)

    ADS  Google Scholar 

  55. J. Zhao, Q. Huang, C. Cruz, S. Li, J.W. Lynn, Y. Chen, M.A. Green, G.F. Chen, G. Li, Z. Li, J.L. Luo, N.L. Wang, P. Dai, Nat. Mater. 7, 2315 (2008)

    Google Scholar 

  56. R.H. Liu et al., Phys. Rev. Lett. 101, 087001 (2008)

    ADS  Google Scholar 

  57. A.F. Kordyuk, Low Temp. Phys. 38, 888 (2012)

    ADS  Google Scholar 

  58. Y. Chen, J.W. Lynn, J. Li, G. Li, G.F. Chen, J.L. Luo, N.L. Wang, P. Dai, C. Dela Cruz, H.A. Mook, Phys. Rev. B 78, 064515 (2008)

    ADS  Google Scholar 

  59. J. Paglione, R.L. Greene, Nat. Phys. 6, 645 (2010)

    Google Scholar 

  60. I.I. Mazin, J. Schmalian, Physica C 469, 614 (2009)

    ADS  Google Scholar 

  61. J. Li, Y.F. Guo, S.B. Zhang, J. Yuan, Y. Tsujimo, X. Wang, C.I. Sathish, Y. Sun, S. Yu, W. Yi, K. Yamaura, E. Takayama, Y. Shirako, M. Akaogi, H. Kontani, Phys. Rev. B 85, 214509 (2012)

    ADS  Google Scholar 

  62. R.M. Fernandes, M.G. Vavilov, A.V. Chubukov, Phys. Rev. B 85, 140512 (2012)

    ADS  Google Scholar 

  63. M.G. Vavilov, A.V. Chubukov, Phys. Rev. B 84, 214521 (2011)

    ADS  Google Scholar 

  64. Y. Senga, H. Kontani, J. Phys. Soc. Jpn. 77, 113710 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Vice Chancellor Research and Technology of Alzahra University for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Daadmehr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tehrani, F.S., Daadmehr, V. The Superconductivity Mechanism in Nd-1111 Iron-Based Superconductor Doped by Calcium. J Low Temp Phys 199, 1299–1313 (2020). https://doi.org/10.1007/s10909-020-02418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02418-1

Keywords

Navigation