Skip to main content
Log in

Investigation on Wicking Performance of Cryogenic Propellants Within Woven Screens Under Different Thermal and Gravity Conditions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In order to investigate the wicking performance of cryogenic propellants within metallic screens for space liquid acquisition devices, a modified one-dimensional macroscopic model is introduced. The model is successfully verified by the experimental data of both isothermal and superheated wicking. Dutch twill weave 200 × 1400 in the warp direction is chosen as the screen object. Three cryogenic propellants such as hydrogen, oxygen and methane are selected as the working fluids. The wicking performances at different thermal conditions (isothermal and superheated) and gravity levels (Earth, Mars, Moon and space) are investigated. Results show that the wicking velocity and maximal wicking height both have a negative correlation with the gravity and superheated degree. The wicking performance deviation between different fluids or different superheated conditions increases as the gravity decreases. LH2 always has the fastest initial wicking velocity, but its wicking performance rapidly deteriorates to the worst at superheated conditions due to its strongest ability of heat transfer. The wicking performance of LO2 is the worst at isothermal condition, but becomes better than that of LH2 at superheated condition. Wicking of LCH4 always has the largest maximum wicking height and performs the best among the three propellants under the same condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

c :

Specific heat capacity (J kg−1 K−1)

c p :

Specific heat capacity at constant pressure (J kg−1 K−1)

D c :

Equivalent capillary diameter (m)

Gr:

Grashof number

g :

Gravity (m s−2)

H :

Height of sample (m)

h :

Wicking height (m)

h fg :

Latent heat of evaporation (J kg−1)

K :

Permeability (m2)

k :

Coefficient of heat transfer (W K−1 m−2)

q :

Heat exchange capacity (J)

\(\dot{q}\) :

Heat transfer rate (W)

l :

Characteristic length (m)

m :

Mass (kg)

Nu:

Nusselt number

n :

Empirical coefficient

Pr:

Prandtl number

T :

Temperature (K)

t :

Time (s)

u :

Wicking velocity (m s−1)

W :

Width (m)

α v :

Expansion coefficient (K−1)

ΔT :

Temperature difference, superheat degree (K)

δ :

Thickness (m)

θ :

Contact angle (°)

λ :

Thermal conductivity (W m−1 K−1)

µ :

Dynamic viscosity (Pa s)

v :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

σ :

Surface tension (N m−1)

ϕ :

Porosity (–)

e:

Evaporation

eq:

Equilibrium

g:

Gas

l:

Liquid

max:

Maximum

S:

Shute

s:

Solid

W:

Warp

DTW:

Dutch twill weave

LAD:

Liquid acquisition device

LH2 :

Liquid hydrogen

LO2 :

Liquid oxygen

ECD:

Equivalent capillary diameter

LCH4 :

Liquid methane

LN2 :

Liquid nitrogen

SHD:

Superheated degree

References

  1. Y. Ma, Y. Li, K. Zhu, Y. Wang, L. Wang, Investigation on no-vent filling process of liquid hydrogen tank under microgravity condition. Int. J. Hydrogen Energy 42(12), 8264–8277 (2017)

    Article  Google Scholar 

  2. J.T. Howell, J.C. Mankins, J.C. Fikes, In-space cryogenic propellant depot stepping stone. Acta Astronaut. 59(1–5), 230–235 (2006)

    Article  ADS  Google Scholar 

  3. S. Mustafi, C. DeLee, J. Francis, X. Li, D. McGuinness, C.A. Nixon, L. Purves, W. Willis, S. Riall, M. Devine, A. Hedayatb, Cryogenic propulsion for the titan orbiter polar surveyor (TOPS) mission. Cryogenics 74(3), 81–87 (2016)

    Article  ADS  Google Scholar 

  4. S. Tucker, L. Hastings, D. Haynes, An overview of NASA’s in-space cryogenic propellant management technologies, in Thermal Fluid Analysis Workshop, Huntsville, AL, 2001

  5. L.J. Hastings, D.W. Plachta, L. Salerno, P. Kittel, An overview of NASA efforts on zero boil off storage of cryogenic propellants. Cryogenics 41(11–12), 833–839 (2001)

    Article  ADS  Google Scholar 

  6. D.J. Chato, Cryogenic fluid transfer for exploration. Cryogenics 48(5), 206–209 (2008)

    Article  ADS  Google Scholar 

  7. C.H. Delee, P. Barfknecht, S. Breon, R. Boyle, M. DiPirro, J. Francis, J. Huynh, X. Li, J. McGuire, S. Mustafi, J. Tuttle, D. Wegel, Techniques for on-orbit cryogenic servicing. Cryogenics 64, 289–294 (2014)

    Article  ADS  Google Scholar 

  8. J.A. Goff, B.F. Kutter, F. Zegler, B. Bienhoff, F. Chandler, J. Marchetta, Realistic near-term propellant depots: implementation of a critical spacefaring capability, in AIAA Space 2009 Conference and Exposition, Pasadena, 14–17 Sept 2009

  9. S.C. Brock, R.K. Grove, R.O. Sloma, D.L. Balzer, Y. Brill, G.A. Yankura, A survey of current developments in surface tension devices for propellant acquisition. J. Spacecr. Rockets 8(2), 83–98 (1971)

    Article  ADS  Google Scholar 

  10. D.A. Fester, A.J. Villars, P.E. Uney, Surface tension propellant acquisition system technology for space shuttle reaction control tanks. J. Spacecr. Rockets 13(9), 522–527 (2012)

    Article  ADS  Google Scholar 

  11. S. Darr, J. Hartwig, Optimal liquid acquisition device screen weave for a liquid hydrogen fuel depot. Int. J. Hydrogen Energy 39(9), 4356–4366 (2014)

    Article  Google Scholar 

  12. S. Dominick, J. Tegart, Orbital test results of a vaned liquid acquisition device, in 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Indianapolis, 1994

  13. D.J. Chato, Technologies for refueling spacecraft on-orbit, in AIAA Space 2000 Conference and Exposition, 2000

  14. J.R. Tegart, S.L. Driscoll, L.J. Hastings, Fluid acquisition and resupply experiments on space shuttle flights STS-53 and STS-57. Marshall Space Flight Center, Alabama, NASA/TP-2011-216465, 2011

  15. J. Hartwig, D. Chato, J. McQuillen, Screen channel LAD bubble point tests in liquid hydrogen. Int. J. Hydrogen Energy 39(2), 853–861 (2014)

    Article  Google Scholar 

  16. J.W. Hartwig, Y. Kamotani, The static reseal pressure model for cryogenic screen channel liquid acquisition devices. Int. J. Heat Mass Transf. 99, 31–43 (2016)

    Article  Google Scholar 

  17. Symons E P. Wicking of Liquids in Screens. NASA TN D-7657, 1974

  18. F.T. Dodge, The new “dynamic behavior of liquids in moving containers” (Southwest Research Inst., San Antonio, 2000)

    Google Scholar 

  19. L.J. Hastings, L.G. Bolshinskiy, R.G. Schunk, A.K. Martin, R.H. Eskridge, B.D. Hamill, C.F. Gomez, A. Frenkel, G. Grayson, M.L. Pendleton, Thermal integration of a liquid acquisition device into a cryogenic feed system. Marshall Space Flight Center, USA, NASA/TP-2011-216474, 2011

  20. J. Hartwig, S. Darr, Influential factors for liquid acquisition device screen selection for cryogenic propulsion systems. Appl. Therm. Eng. 66(1), 548–562 (2014)

    Article  Google Scholar 

  21. C. Camarotti, O. Deng, S. Darr, J. Hartwig, J.N. Chung, Room temperature bubble point, flow-through screen, and wicking experiments for screen channel liquid acquisition devices. Appl. Therm. Eng. 149, 1170–1185 (2019)

    Article  Google Scholar 

  22. N. Fries, K. Odic, M. Conrath, M. Dreyer, The effect of evaporation on the wicking of liquids into a metallic weave. J. Colloid Interface Sci. 321(1), 118 (2008)

    Article  ADS  Google Scholar 

  23. Y. Ma, Y.Z. Li, L. Wang, G. Lei, T.X. Wang, Investigation on isothermal wicking performance within metallic weaves for screen channel liquid acquisition devices (LADs). Int. J. Heat Mass Transf. 135, 392–402 (2019)

    Article  Google Scholar 

  24. Y. Ma, D. Zimnik, M. Dreyer, Y.Z. Li, Investigation on cryo-wicking performance within metallic weaves under superheated conditions for screen channel liquid acquisition devices (LADs). Int. J. Heat Mass Transf. 141, 530–541 (2019)

    Article  Google Scholar 

  25. Y. Grebenyuk, M.E. Dreyer, Wicking of liquid nitrogen into superheated porous structures. Cryogenics 78, 27–39 (2016)

    Article  ADS  Google Scholar 

  26. N. Fries, M. Dreyer, An analytic solution of capillary rise restrained by gravity. J. Colloid Interface Sci. 320(1), 259–263 (2008)

    Article  ADS  Google Scholar 

  27. N. Fries, M. Dreyer, The transition from inertial to viscous flow in capillary rise. J. Colloid Interface Sci. 327(1), 125–128 (2008)

    Article  ADS  Google Scholar 

  28. F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure (Academic press, Cambridge, 2012)

    Google Scholar 

  29. R. Masoodi, K.M. Pillai, Wicking in Porous Materials: Traditional and Modern Modeling Approaches (CRC Press, Boca Raton, 2012)

    Book  Google Scholar 

  30. NIST, Chemistry, WebBook. NIST standard reference database number 69. October 2011 release, http://webbook.nist.gov/chemistry/

  31. J. Hartwig, J.A. Mann, A predictive bubble point pressure model for porous liquid acquisition device screens. J. Porous Media 17(17), 587–600 (2014)

    Article  Google Scholar 

  32. J.W. Hartwig, Y. Kamotani, The static bubble point pressure model for cryogenic screen channel liquid acquisition devices. Int. J. Heat Mass Transf. 101, 502–516 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [51906194, 51876153] and the Research Fund of State Key Laboratory of Technologies in Space Cryogenic Propellants [SKLTSCP1810].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fushou Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Li, Y., Xie, F. et al. Investigation on Wicking Performance of Cryogenic Propellants Within Woven Screens Under Different Thermal and Gravity Conditions. J Low Temp Phys 199, 1344–1362 (2020). https://doi.org/10.1007/s10909-020-02446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02446-x

Keywords

Navigation