Skip to main content
Log in

Experimental Validation of Calorimetric Electron Capture Spectral Theory with \({}^{193}\)Pt

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Using microcalorimeters, a high statistics, high-resolution calorimetric spectrum of electron capture in \({}^{163}\)Ho can be used to determine the neutrino mass. The spectral shape can be calculated from first principles with various assumptions and approximations. To determine the validity of these choices, the theoretical calculations must be compared to data from multiple isotopes. New calorimetric data for a \({}^{193}\)Pt-in-Pt absorber measured with a transition edge sensor are presented and compared to theoretical calculations and values from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Nucciotti, Adv. High Energy Phys. (2016). https://doi.org/10.1155/2016/9153024

    Article  Google Scholar 

  2. L. Gastaldo, K. Blaum, A. Doerr, C.E. Düllmann, K. Eberhardt, S. Eliseev, C. Enss, A. Faessler, A. Fleischmann, S. Kempf, M. Krivoruchenko, S. Lahiri, M. Maiti, Y.N. Novikov, P.C.-O. Ranitzsch, F. Simkovic, Z. Szusc, M. Wegner, J. Low Temp. Phys. 176(5–6), 876–884 (2014). https://doi.org/10.1007/s10909-014-1187-4

    Article  ADS  Google Scholar 

  3. P.C.-O. Ranitzsch, C. Hassel, M. Wegner, D. Hengstler, S. Kempf, A. Fleischmann, C. Enss, L. Gastaldo, A. Herlert, K. Johnston, Phys. Rev. Lett. 119(12), 122501 (2017). https://doi.org/10.1103/PhysRevLett.119.122501

    Article  ADS  Google Scholar 

  4. M. Faverzani, B. Alpert, D. Backer, D. Bennet, M. Biasotti, C. Brofferio, V. Ceriale, G. Ceruti, D. Corsini, P.K. Day, M. De Gerone, R. Dressler, E. Ferri, J. Fowler, E. Fumagalli, J. Gard, F. Gatti, A. Giachero, J. Hays-Wehle, S. Heinitz, G. Hilton, U. Köster, M. Lusignoli, M. Maino, J. Mates, S. Nisi, R. Nizzolo, A. Nucciotti, A. Orlando, L. Parodi, G. Pessina, G. Pizzigoni, A. Puiu, S. Ragazzi, C. Reintsema, M. Ribeiro-Gomez, D. Schmidt, D. Schuman, F. Siccardi, M. Sisti, D. Swetz, F. Terranova, J. Ullom, L. Vale, J. Low Temp. Phys. 184(3–4), 922–929 (2016). https://doi.org/10.1007/s10909-016-1540-x

    Article  ADS  Google Scholar 

  5. M.P. Croce, M.W. Rabin, V. Mocko, G.J. Kunde, E.R. Birnbaum, E.M. Bond, J.W. Engle, A.S. Hoover, F.M. Nortier, A.D. Pollington, W.A. Taylor, N.R. Weisse-Bernstein, L.E. Wolfsberg, J.P. Hays-Wehle, D.R. Schmidt, D.S. Swetz, J.N. Ullom, T.E. Barnhart, R.J. Nickles, J. Low Temp. Phys. 184(3–4), 958–968 (2016). https://doi.org/10.1007/s10909-015-1451-2

    Article  ADS  Google Scholar 

  6. H. Rotzinger, M. Linck, A. Burck, M. Rodrigues, M. Loidl, E. Leblanc, L. Fleischmann, A. Fleischmann, C. Enss, J. Low Temp. Phys. 151(3–4), 1087–1093 (2008). https://doi.org/10.1007/s10909-008-9787-5

    Article  ADS  Google Scholar 

  7. M. Loidl, E. Leblanc, M. Rodrigues, T. Branger, D. Lacour, J. Bouchard, B. Censier, Appl. Radiat. Isot. 66(6–7), 872–876 (2008). https://doi.org/10.1016/J.APRADISO.2008.02.027

    Article  Google Scholar 

  8. M. Loidl, M. Rodrigues, B. Censier, S. Kowalski, X. Mougeot, P. Cassette, T. Branger, D. Lacour, Appl. Radiat. Isot. 68(7–8), 1454–1458 (2010). https://doi.org/10.1016/J.APRADISO.2009.11.054

    Article  Google Scholar 

  9. M. Loidl, M. Rodrigues, R. Mariam, Appl. Radiat. Isot. (2017). https://doi.org/10.1016/j.apradiso.2017.10.042

    Article  Google Scholar 

  10. M. Loidl, J. Beyer, L. Bockhorn, C. Enss, D. Györi, S. Kempf, K. Kossert, R. Mariam, O. Nähle, M. Paulsen, M. Rodrigues, M. Schmidt, J. Low Temp. Phys. 193(5–6), 1251–1256 (2018). https://doi.org/10.1007/s10909-018-1933-0

    Article  ADS  Google Scholar 

  11. M. Loidl, J. Beyer, L. Bockhorn, C. Enss, S. Kempf, K. Kossert, R. Mariam, O. Nähle, M. Paulsen, P. Ranitzsch, M. Rodrigues, M. Schmidt, Appl. Radiat. Isot. 153, 108830 (2019). https://doi.org/10.1016/J.APRADISO.2019.108830

    Article  Google Scholar 

  12. K.E. Koehler, M.A. Famiano, C.J. Fontes, T.W. Gorczyca, M.W. Rabin, D.R. Schmidt, J.N. Ullom, M.P. Croce, J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1984-2

    Article  Google Scholar 

  13. L. Gastaldo, K. Blaum, K. Chrysalidis, T. Day Goodacre, A. Domula, M. Door, H. Dorrer, C.E. Düllmann, K. Eberhardt, S. Eliseev, C. Enss, A. Faessler, P. Filianin, A. Fleischmann, D. Fonnesu, L. Gamer, R. Haas, C. Hassel, D. Hengstler, J. Jochum, K. Johnston, U. Kebschull, S. Kempf, T. Kieck, U. Köster, S. Lahiri, M. Maiti, F. Mantegazzini, B. Marsh, P. Neroutsos, Y.N. Novikov, P. C.O. Ranitzsch, S. Rothe, A. Rischka, A. Saenz, O. Sander, F. Schneider, S. Scholl, R.X. Schüssler, C. Schweiger, F. Simkovic, T. Stora, Z. Szücs, A. Türler, M. Veinhard, M. Weber, M. Wegner, K. Wendt, K. Zuber, Eur. Phys. J. Spec. Topics 226, 1623–1694 (2017). https://doi.org/10.1140/epjst/e2017-70071-y

  14. A. De Rújula, Nucl. Phys. B 188(3), 414–458 (1981). https://doi.org/10.1016/0550-3213(81)90002-X

    Article  ADS  Google Scholar 

  15. A. De Rújula, M. Lusignoli, Phys. Lett. B 118(4), 429–434 (1982). https://doi.org/10.1016/0370-2693(82)90218-0

    Article  ADS  Google Scholar 

  16. A. De Rújula, M. Lusignoli, pp. 1–6 (2015). arxiv:1510.05462

  17. A. De Rújula, M. Lusignoli, J. High Energy Phys. 2016(5), 15 (2016). https://doi.org/10.1007/JHEP05(2016)015

    Article  Google Scholar 

  18. A. Faessler, L. Gastaldo, F. Šimkovic, J. Phys. G Nucl. Part. Phys. 42(1), 015108 (2015). https://doi.org/10.1088/0954-3899/42/1/015108

    Article  ADS  Google Scholar 

  19. A. Faessler, F. Šimkovic, Phys. Rev. C 91(4), 045505 (2015). https://doi.org/10.1103/PhysRevC.91.045505

    Article  ADS  Google Scholar 

  20. A. Faessler, C. Enss, L. Gastaldo, F. Simkovic, Phys. Rev. C Nucl. Phys. 064302, 1–6 (2015). https://doi.org/10.1103/PhysRevC.91.064302

    Article  Google Scholar 

  21. A. Faessler, L. Gastaldo, F. Šimkovic, Phys. Rev. C 95(4), 045502 (2017). https://doi.org/10.1103/PhysRevC.95.045502

    Article  ADS  Google Scholar 

  22. R.G.H. Robertson, Phys. Rev. C Nucl. Phys. 91(3), 1–6 (2015). https://doi.org/10.1103/PhysRevC.91.035504

    Article  Google Scholar 

  23. M. Braß, C. Enss, L. Gastaldo, M.W. Haverkort, pp. 1–15 (2017). arxiv:1711.10309

  24. X. Mougeot, Appl. Radiat. Isot. 134, 225–232 (2018). https://doi.org/10.1016/J.APRADISO.2017.07.027

    Article  Google Scholar 

  25. X. Mougeot, Appl. Radiat. Isot. 154, 108884 (2019). https://doi.org/10.1016/J.APRADISO.2019.108884

    Article  Google Scholar 

  26. M. Brass, M.W. Haverkort, pp. 1–13 (2020). arXiv:2002.05989

  27. M.P. Croce, K.E. Koehler, G.J. Kunde, M.W. Rabin, E.M. Bond, W.A. Moody, D.R. Schmidt, L.R. Vale, R.D. Horansky, V. Kotsubo, J.N. Ullom, IEEE Trans. Appl. Supercond. 23, 3 (2013). https://doi.org/10.1109/TASC.2013.2239692

    Article  Google Scholar 

  28. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2004)

    MATH  Google Scholar 

  29. K. Koehler, Sensitivity of the Theoretical Electron Capture Shape and Comparisons to Experiment. Ph.D. thesis, Western Michigan University (2019). https://scholarworks.wmich.edu/dissertations/3467/

  30. N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series, vol. 2 (MIT Press, Cambridge, 1949)

    Book  Google Scholar 

  31. C.J. Fontes, H.L. Zhang, J. Abdallah Jr., R.E.H. Clark, D.P. Kilcrease, J. Colgan, R.T. Cunningham, P. Hakel, N.H. Magee, M.E. Sherrill, J. Phys. B At. Mol. Opt. Phys. 48(14), 144014 (2015). https://doi.org/10.1088/0953-4075/48/14/144014

    Article  ADS  Google Scholar 

  32. H.L. Ravn, P. Bøgeholt, Phys. Rev. C 4(2), 601–605 (1971). https://doi.org/10.1103/PhysRevC.4.601

    Article  ADS  Google Scholar 

  33. B.L. Robinson, Nucl. Phys. 64(2), 197–208 (1965). https://doi.org/10.1016/0029-5582(65)90351-2

    Article  Google Scholar 

  34. J.N. Bahcall, Phys. Rev. 129(6), 2683–2694 (1963). https://doi.org/10.1103/PhysRev.129.2683

    Article  ADS  Google Scholar 

  35. E. Vatai, Nucl. Phys. Sect. A 156(3), 541–552 (1970). https://doi.org/10.1016/0375-9474(70)90250-2

    Article  ADS  Google Scholar 

  36. J.B. Swan, W.M. Portnoy, R.D. Hill, Phys. Rev. 90(2), 257–258 (1953). https://doi.org/10.1103/PhysRev.90.257

    Article  ADS  Google Scholar 

  37. R.A. Naumann, Bull. Am. Phys. Soc. 1, 42 (1956)

    Google Scholar 

  38. P.K. Hopke, R.A. Naumann, Phys. Rev. 185(4), 1565–1567 (1969). https://doi.org/10.1103/PhysRev.185.1565

    Article  ADS  Google Scholar 

  39. R.A. Naumann, P.K. Hopke, Bull. Am. Phys. Soc. 13, 1469 (1968)

    Google Scholar 

  40. P.K. Hopke, R.A. Naumann, Phys. Rev. C 4(2), 606–606 (1971). https://doi.org/10.1103/PhysRevC.4.606

    Article  ADS  Google Scholar 

  41. B. Jonson, J.U. Andersen, G. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.H. Gustafsson, P. Hansen, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn, Nucl. Phys. A 396, 479–493 (1983). https://doi.org/10.1016/0375-9474(83)90040-4

    Article  ADS  Google Scholar 

  42. B.R.S. Babu, M.T.R. Rao, J. Phys. G Nucl. Phys. 14(4), 499–501 (1988). https://doi.org/10.1088/0305-4616/14/4/011

    Article  ADS  Google Scholar 

  43. E. Achterberg, O. Capurro, G. Marti, V. Vanin, R. Castro, Nucl. Data Sheets 107(1), 1–224 (2006). https://doi.org/10.1016/j.nds.2005.12.001

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (DOE) Nuclear Energy’s Fuel Cycle Research and Development (FCR&D), Materials Protection, Accounting and Control Technologies (MPACT) Campaign. We gratefully acknowledge the support of the Center for Integrated Nanotechnologies, an Office of Science User Facility, and the Massachusetts Institute of Technology reactor personnel for facilitating the irradiation of the Pt foil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Koehler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koehler, K.E., Rabin, M.W., Carpenter, M.H. et al. Experimental Validation of Calorimetric Electron Capture Spectral Theory with \({}^{193}\)Pt. J Low Temp Phys 200, 407–417 (2020). https://doi.org/10.1007/s10909-020-02465-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02465-8

Keywords

Navigation