Skip to main content
Log in

Green Synthesis of Silver Nanoparticle Using Water Extract of Onion Peel and Application in the Acetylation Reaction

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Functional group protections are the key to the synthesis of targeted molecules. In particular, the acetylation reaction is considered as one of the important organic transformations for the preparation of useful products, such as polymers, food additives, cosmetics, medicines and perfumes. Unfortunately, most these methods employed for the acetylation process encompassed the use of acids, bases and hazardous reagents. In this manuscript, a simple and green synthesis of silver nanoparticles (AgNPs) is described using water extract of onion peel as reductant. The synthesized AgNPs were then employed as green catalyst in the acetylation of alcohols and amines. In the transmission electron microscopy analysis, the AgNPs were successfully prepared with an average size of 12.5 nm and was found to be in spherical size without any agglomeration being observed. Moreover, the synthesized AgNPs showed remarkable catalytic activity by mediating the synthesis of various acetates and amides in good to excellent yields (72–95% yields). In addition, the synthesized AgNPs are recyclable and can be utilized up to five times for the subsequent reactions, without significant lost in catalytic efficiency (93–95%). The current method offers many benefits such as environmental benign and green chemical process compared to previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Scheme 3

Similar content being viewed by others

References

  1. Das, R.; Chakraborty, D.: Silver triflate catalyzed acetylation of alcohols, thiols, phenols, and amines. Synthesis 2011, 1621–1625 (2011)

    Google Scholar 

  2. Scriven, E.F.: 4-Dialkylaminespyridines: super acylation and alkylation catalysts. Chem. Soc. Rev. 12, 129–161 (1983)

    Google Scholar 

  3. Shaik, M.; Ali, Z.; Khan, M.; Kuniyil, M.; Assal, M.E.; Alkhathlan, H.Z.; Al-Warthan, A.; Siddiqui, M.R.; Khan, M.; Adil, S.F.: Green synthesis and characterization of palladium nanoparticles using Origanum vulgare L. extract and their catalytic activity. Molecules 22, 165 (2017)

    Google Scholar 

  4. Mojtahedi, M.M.; Samadian, S.: Efficient and rapid solvent-free acetylation of alcohols, phenols, and thiols using catalytic amounts of sodium acetate trihydrate. J. Chem. 2013, 1–7 (2013)

    Google Scholar 

  5. Prajapti, S.K.; Nagarsenkar, A.; Babu, B.N.: Tris(pentafluorophenyl) borane catalyzed acylation of alcohols, phenols, amines, and thiophenols under solvent-free condition. Tetrahedron Lett. 55, 1784–1787 (2014)

    Google Scholar 

  6. Alam, M.; Rahman, A.; Alandis, N.M.; Shaik, M.R.: Ni/Silica catalysed acetylation of phenols and naphthols: an eco-friendly approach. Arab. J. Chem. 7, 53–56 (2014)

    Google Scholar 

  7. Kumar, N.U.; Reddy, B.S.; Reddy, V.P.; Bandichhor, R.: Zinc triflate catalyzed acylation of alcohols, phenols, and thiophenols. Tetrahedron Lett. 55, 910–912 (2014)

    Google Scholar 

  8. Joo, S.R.; Youn, Y.J.; Hwang, Y.R.; Kim, S.H.: Highly active manganese mediated acylation of alcohols with acid chlorides or anhydrides. Synlett 28, 2665–2669 (2017)

    Google Scholar 

  9. Bajracharya, G.B.; Shrestha, S.S.: Unprecedented acetylation of phenols using a catalytic amount of magnesium powder. Synth. Commun. 48, 1688–1693 (2018)

    Google Scholar 

  10. Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K.: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018)

    Google Scholar 

  11. Bharathi, D.; Diviya, Josebin M.; Vasantharaj, S.; Bhuvaneshwari, V.: Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. J. Nanostruct. Chem. 8, 83–92 (2018)

    Google Scholar 

  12. Dong, X.Y.; Gao, Z.W.; Yang, K.F.; Zhang, W.Q.; Xu, L.W.: Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol. 5, 2554–2574 (2015)

    Google Scholar 

  13. Ahlawat, D.S.; Kumari, R.; Rachna, Y.I.: Synthesis and characterization of sol–gel prepared silver nanoparticles. Int. J. Nanosci. 13, 1–7 (2014)

    Google Scholar 

  14. Adner, D.; Noll, J.; Schulze, S.; Hietschold, M.; Lang, H.: Asperical silver nanoparticles by thermal decomposition of a single-source-precursor. Inorganica Chim. Acta 446, 19–23 (2016)

    Google Scholar 

  15. Alagumuthu, G.; Kirubha, R.: Synthesis and characterisation of silver nanoparticles in different medium. Open. J. Synth. Theory Appl. 1, 13–17 (2012)

    Google Scholar 

  16. Awad, M.A.; Hendi, A.A.; Ortashi, K.M.; Alotaibi, R.A.; Sharafeldin, M.S.: Characterization of silver nanoparticles prepared by wet chemical method and their antibacterial and cytotoxicity activities. Trop. J. Pharm. Res. 15, 679–685 (2016)

    Google Scholar 

  17. Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C.: Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 38, 545–560 (2016)

    Google Scholar 

  18. Butola, B.S.; Gupta, A.; Roy, A.: Multifunctional finishing of cellulosic fabric via facile, rapid in situ green synthesis of AgNPs using pomegranate peel extract biomolecules. Sustain. Chem. Pharm. 12, 100135 (2019)

    Google Scholar 

  19. Omole, R.K.; Torimiro, N.; Alayande, S.O.; Ajenifuja, E.: Silver nanoparticles synthesized from Bacillus subtilis for detection of deterioration in the post-harvest spoilage of fruit. Sustain. Chem. Pharm. 10, 33–40 (2018)

    Google Scholar 

  20. Zayadi, R.A.; Bakar, F.A.; Ahmad, M.K.: Elucidation of synergistic effect of eucalyptus globulus honey and Zingiber officinale in the synthesis of colloidal biogenic gold nanoparticles with antioxidant and catalytic properties. Sustain. Chem. Pharm. 13, 100156 (2019)

    Google Scholar 

  21. Zeebaree, S.Y.S.; Zeebaree, A.Y.S.: Synthesis of copper nanoparticles as oxidising catalysts for multi-component reactions for synthesis of 1, 3, 4-thiadiazole derivatives at ambient temperature. Sustain. Chem. Pharm. 13, 100155 (2019)

    Google Scholar 

  22. Parveen, K.; Banse, V.; Ledwani, L.: Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf. Proc. 1724, 1–5 (2016)

    Google Scholar 

  23. Ajitha, B.; Reddy, Y.A.K.; Reddy, P.S.: Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Mater. Sci. Eng., C 49, 373–381 (2015)

    Google Scholar 

  24. Behravan, M.; Panahi, A.H.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A.: Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol. 124, 148–154 (2018)

    Google Scholar 

  25. Moodley, J.S.; Krishna, S.B.N.; Pillay, K.; Govender, P.: Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 1–9 (2018)

    Google Scholar 

  26. Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E.: A Review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng. 2015, 1–9 (2015)

    Google Scholar 

  27. Chia, P.W.; Lim, B.S.; Yong, F.S.J.; Poh, S.C.; Kan, S.Y.: An efficient synthesis of bisenols in water extract of waste onion peel ash. Environ. Chem. Lett. 16, 1493–1499 (2018)

    Google Scholar 

  28. Asseri, S.N.A.R.M.; Tan, S.H.; Mohamad, W.N.K.W.; Poh, S.C.; Chia, P.W.; Kan, S.Y.; Chuah, T.S.: MgCl2 as efficient and inexpensive catalyst for the synthesis of 1, 4-dihydropyridine derivatives. Malaysian J. Anal. Sci. 21, 13–19 (2017)

    Google Scholar 

  29. Tan, S.H.; Chuah, T.S.; Chia, P.W.: An improved protocol on the synthesis of thiazolo [3, 2-a] pyrimidine using ultrasonic probe irradiation. J. Korean Chem. Soc. 60, 245–250 (2016)

    Google Scholar 

  30. Chia, P.W.; Lim, B.S.; Tan, K.C.; Yong, F.S.J.; Kan, S.Y.: Water extract of onion peel for the synthesis of bisindolylmethanes. J. King. Saud. Univ. Sci. 31, 642–647 (2019)

    Google Scholar 

  31. Ruslan, N.A.A.A.; Suk, V.R.E.; Misran, M.; Chia, P.W.: Highly efficient and green approach of synthesizing carboxylic acids from aldehydes using sodium hexametaphosphate. Sustain. Chem. Pharm. 16, 100246 (2020)

    Google Scholar 

  32. Pucciarini, L.; Ianni, F.; Petesse, V.; Pellati, F.; Brighenti, V.; Volpi, C.; Gargaro, M.; Natalini, B.; Clementi, C.; Sardella, R.: Onion (Allium cepa L.) skin: a rich resource of biomolecules for the sustainable production of colored biofunctional textiles. Molecules 24, 634 (2019)

    Google Scholar 

  33. Bhuyan, R.; Saikia, C.N.: Isolation of colour components from native dye-bearing plants in northeastern India. Bioresour. Technol. 96, 363–372 (2005)

    Google Scholar 

  34. Lu, X.; Wang, J.; Al-Qadiri, H.M.; Rose, C.F.; Powers, J.R.; Tang, J.; Rasco, B.A.: Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem. 129, 637–644 (2011)

    Google Scholar 

  35. Mata, Y.N.; Torres, E.; Blázquez, M.L.; Baester, A.; González, F.M.J.A.; Munoz, J.A.: Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J. Hazard. Mater. 166, 612–618 (2009)

    Google Scholar 

  36. Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Method Enzymol. 299, 152–178 (1999)

    Google Scholar 

  37. Prior, R.L.; Wu, X.; Schaich, K.: Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary Supplements. J. Agric. Food Chem. 53, 4290–4302 (2005)

    Google Scholar 

  38. Venugopal, K.; Rather, H.A.; Rajagopal, K.; Shanthi, M.P.; Sheriff, K.; Illiyas, M.; Rather, R.A.; Manikandan, E.; Uvarajan, S.; Bhaskar, M.; Maaza, M.: Synthesis of silver nanoparticles (AgNPs) for anticancer activities (MCF breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J. Photochem. Photobiol., B 167, 282–289 (2017)

    Google Scholar 

  39. Gnanajobitha, G.; Paulkumar, K.; Vanaja, M.; Rajeshkumar, S.; Malarkodi, C.; Annadurai, G.; Kannan, C.: Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J. Nanostruct. Chem. 3, 67 (2013)

    Google Scholar 

  40. Mie, R.; Samsudin, M.W.; Din, L.B.; Ahamd, A.; Ibrahim, N.; Adnan, S.N.A.: Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int. J. Nanomed. 9, 121–127 (2013)

    Google Scholar 

  41. Raj, S.; Chand Mali, S.; Trivedi, R.: Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochem. Biophys. Res. Commun. 503, 2814–2819 (2018)

    Google Scholar 

  42. Qayum, M.A.; Kumar, N.U.; Basha, M.A.; Srinivas, P.: Ferric triflate Fe(OTf)3 as a highly efficient catalyst for the acetylation of alcohols, phenols, thiols and amines: reaction mechanism understanding through density functional theory. Chem. Biol. Interf. 4, 263–267 (2014)

    Google Scholar 

  43. Kalla, R.M.N.; Reddy, S.S.; Kim, I.: Acylation of phenols, alcohols, thiols, amines and aldehydes using sulfonic acid functionalized hyper-cross-linked poly (2-naphthol) as a solid acid catalyst. Catal. Lett. 149, 2696–2705 (2019)

    Google Scholar 

  44. Khaligh, N.G.; Mihankhah, T.; Johan, M.R.; Juan, J.C.: 4-Imidazol-1-yl-butane-1- sulfonic acid ionic liquid: synthesis, structural analysis, physical properties and catalytic application as dual solvent-catalyst. Phosphorus, Sulfur Silicon Relat. Elem. 194, 866–878 (2019)

    Google Scholar 

  45. Veisi, H.; Nikseresht, A.; Rostami, A.; Hemmati, S.: Fe3O4@PEG core/shell nanoparticles as magnetic nanocatalyst for acetylation of amines and alcohols using ultrasound irradiations under solvent-free conditions. Res. Chem. Intermed. 45, 507–520 (2019)

    Google Scholar 

  46. Qayum, M.A.; Kumar, N.U.; Basha, M.A.; Srinivas, P.: Ferric triflate Fe(OTf)3 as a highly efficient catalyst for the acetylation of alcohols, phenols, thiols and amines Reaction mechanism understanding through density functional theory. Chem. Biol. Interface 4, 263–267 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Ministry of Education Malaysia (KPM) for the Fundamental Research Grant Scheme (FRGS) (Vot. No. 59499), UMT/ RMIC/FRGS/1/2018/59499(1) and Universiti Malaysia Terengganu for providing necessary facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poh Wai Chia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, Y.H., Azmi, A.A., Mohd, N.K. et al. Green Synthesis of Silver Nanoparticle Using Water Extract of Onion Peel and Application in the Acetylation Reaction. Arab J Sci Eng 45, 4797–4807 (2020). https://doi.org/10.1007/s13369-020-04595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04595-3

Keywords

Navigation