Skip to main content
Log in

Reversed configuration of photocatalyst to exhibit improved properties of basic processes compared to conventional one

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Performances of semiconductor photocatalysts are integrally determined by efficiencies of basic processes such as light absorption, charge separation and surface catalysis, but conventional configurations of photocatalysts normally suffers from the competition of light absorption originating from cocatalyst deposition and limited interface charge separation between the photocatalyst and cocatalyst. Herein we give the first proof-of-concept illustration that a reversed configuration of photocatalysts with a core/shell structure of microsized Mo2N cocatalysts and nanosized CdS photocatalysts, which exhibits superior solar hydrogen production to the conventional configuration with nanosized Mo2N cocatalysts deposited on the surface of CdS photocatalysts. It is revealed that the reversed configuration outperforms the conventional one in all areas of light absorption, charge separation and surface catalysis. Strikingly, the special core/shell structure introduced here can well avoid the competition of light absorption by cocatalysts and make an effective confinement effect to promote the surface catalysis of Mo2N. Our finding provides an alternative strategy to improve performances of photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fujishima A, Honda K. Nature, 1972, 1: 37–38

    Article  Google Scholar 

  2. Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR. J Am Chem Soc, 2011, 1: 10878–10884

    Article  CAS  Google Scholar 

  3. Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K. Chem Lett, 2002, 1: 736–737

    Article  Google Scholar 

  4. Chen S, Shen S, Liu G, Qi Y, Zhang F, Li C. Angew Chem Int Ed, 2015, 1: 3047–3051

    Article  CAS  Google Scholar 

  5. Chen S, Qi Y, Ding Q, Li Z, Cui J, Zhang F, Li C. J Catal, 2016, 1: 77–83

    Article  CAS  Google Scholar 

  6. Zheng D, Cao XN, Wang X. Angew Chem Int Ed, 2016, 1: 11512–11516

    Article  CAS  Google Scholar 

  7. Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K. Chem Commun, 2002, 1698–1699

  8. Maeda K, Terashima H, Kase K, Higashi M, Tabata M, Domen K. BCSJ, 2008, 1: 927–937

    Article  CAS  Google Scholar 

  9. Kailasam K, Schmidt J, Bildirir H, Zhang G, Blechert S, Wang X, Thomas A. Macromol Rapid Commun, 2013, 1: 1008–1013

    Article  CAS  Google Scholar 

  10. Kiss B, Didier C, Johnson T, Manning TD, Dyer MS, Cowan AJ, Claridge JB, Darwent JR, Rosseinsky MJ. Angew Chem Int Ed, 2014, 1: 14480–14484

    Article  CAS  Google Scholar 

  11. Liu GL, Chen CC, Ji HW, Ma WH, Zhao JC. Sci China Chem, 2012, 1: 1953–1958

    Google Scholar 

  12. Ling X, Xu Y, Wu S, Liu M, Yang P, Qiu C, Zhang G, Zhou H, Su C. Sci China Chem, 2020, 1: 386–392

    Article  CAS  Google Scholar 

  13. Schweinberger FF, Berr MJ, Döblinger M, Wolff C, Sanwald KE, Crampton AS, Ridge CJ, Jäckel F, Feldmann J, Tschurl M, Heiz U. J Am Chem Soc, 2013, 1: 13262–13265

    Article  CAS  Google Scholar 

  14. Dukovic G, Merkle MG, Nelson JH, Hughes SM, Alivisatos AP. Adv Mater, 2008, 1: 4306–4311

    Article  CAS  Google Scholar 

  15. Li Z, Zhang F, Han J, Zhu J, Li M, Zhang B, Fan W, Lu J, Li C. Catal Lett, 2018, 1: 933–939

    Article  CAS  Google Scholar 

  16. Maeda K, Teramura K, Domen K. J Catal, 2008, 1: 198–204

    Article  CAS  Google Scholar 

  17. Wen B, Ma JH, Chen CC, Ma WH, Zhu HY, Zhao JC. Sci China Chem, 2011, 1: 887–897

    Article  CAS  Google Scholar 

  18. Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N, Li Y, Sharp ID, Kudo A, Yamada T, Domen K. Nat Mater, 2016, 1: 611–615

    Article  CAS  Google Scholar 

  19. Yang J, Wang D, Han H, Li C. Acc Chem Res, 2013, 1: 1900–1909

    Article  CAS  Google Scholar 

  20. Ran J, Gao G, Li FT, Ma TY, Du A, Qiao SZ. Nat Commun, 2017, 8: 13907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang D, Li X, Zheng LL, Qin LM, Li S, Ye P, Li Y, Zou JP. Nanoscale, 2018, 1: 19509–19516

    Article  Google Scholar 

  22. Xiao M, Luo B, Lyu M, Wang S, Wang L. Adv Energy Mater, 2018, 8: 1701605

    Article  CAS  Google Scholar 

  23. Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C. J Catal, 2009, 1: 165–168

    Article  CAS  Google Scholar 

  24. Shi Y, Zhang B. Chem Soc Rev, 2016, 1: 1529–1541

    Article  Google Scholar 

  25. Shi X, Wu A, Yan H, Zhang L, Tian C, Wang L, Fu H. J Mater Chem A, 2018, 1: 20100–20109

    Article  Google Scholar 

  26. Yan H, Xie Y, Jiao Y, Wu A, Tian C, Zhang X, Wang L, Fu H. Adv Mater, 2018, 30: 1704156

    Article  CAS  Google Scholar 

  27. Zhu Y, Chen G, Xu X, Yang G, Liu M, Shao Z. ACS Catal, 2017, 1: 3540–3547

    Article  CAS  Google Scholar 

  28. Chen YY, Zhang Y, Jiang WJ, Zhang X, Dai Z, Wan LJ, Hu JS. ACS Nano, 2016, 1: 8851–8860

    Article  CAS  Google Scholar 

  29. Wang S, Wang J, Zhu M, Bao X, Xiao B, Su D, Li H, Wang Y. J Am Chem Soc, 2015, 1: 15753–15759

    Article  CAS  Google Scholar 

  30. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. J Am Chem Soc, 2011, 1: 7296–7299

    Article  CAS  Google Scholar 

  31. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Science, 2007, 1: 100–102

    Article  CAS  Google Scholar 

  32. Tu W, Li Y, Kuai L, Zhou Y, Xu Q, Li H, Wang X, Xiao M, Zou Z. Nanoscale, 2017, 1: 9065–9070

    Article  Google Scholar 

  33. Wang W, Zhu S, Cao Y, Tao Y, Li X, Pan D, Phillips DL, Zhang D, Chen M, Li G, Li H. Adv Funct Mater, 2019, 29: 1901958

    Article  CAS  Google Scholar 

  34. Shi H, Long S, Hu S, Hou J, Ni W, Song C, Li K, Gurzadyan GG, Guo X. Appl Catal B-Environ, 2019, 1: 760–769

    Article  CAS  Google Scholar 

  35. Chen H, Sun Z, Ye S, Lu D, Du P. J Mater Chem A, 2015, 1: 15729–15737

    Article  CAS  Google Scholar 

  36. Zhang H, Lin J, Li Z, Li T, Jia X, Wu XL, Hu S, Lin H, Chen J, Zhu J. Catal Sci Technol, 2019, 1: 502–508

    Article  Google Scholar 

  37. Liu G, Shi J, Zhang F, Chen Z, Han J, Ding C, Chen S, Wang Z, Han H, Li C. Angew Chem Int Ed, 2014, 1: 7295–7299

    Article  CAS  Google Scholar 

  38. Wang B, Huang H, Huang M, Yan P, Isimjan TT, Yang X. Sci China Chem, 2020, https://doi.org/10.1007/s11426-019-9721-0

  39. Fu Q, Bao X. Nat Catal, 2019, 1: 834–836

    Article  CAS  Google Scholar 

  40. Wang T, Gao L, Hou J, Herou SJA, Griffiths JT, Li W, Dong J, Gao S, Titirici MM, Kumar RV, Cheetham AK, Bao X, Fu Q, Smoukov SK. Nat Commun, 2019, 1: 1340–1348

    Article  CAS  Google Scholar 

  41. Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Chem Rev, 2019, 1: 1806–1854

    Article  CAS  Google Scholar 

  42. Cui T, Dong J, Pan X, Yu T, Fu Q, Bao X. J Energy Chem, 2019, 1: 123–127

    Article  Google Scholar 

  43. Li H, Guo C, Fu Q, Xiao J. J Phys Chem Lett, 2019, 1: 533–539

    Article  CAS  Google Scholar 

  44. Bae JH, Han JH, Chung TD. Phys Chem Chem Phys, 2012, 1: 448–463

    Article  Google Scholar 

  45. Zhang J, Li CM. Chem Soc Rev, 2012, 1: 7016–7031

    Article  CAS  Google Scholar 

  46. Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang J. Energy Environ Sci, 2015, 1: 731–759

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21633009, 21925206); the Dalian National Laboratory For Clean Energy (DNL) Cooperation Fund, Chinese Academy of Sciences (DNL 201913), International Partnership Program of Chinese Academy of Sciences (121421KYSB20190025) and the DICP foundation of innovative research (DICP I201927). F. Zhang thanks the support from Liaoning Revitalization Talents Program (XLYC1807241).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Landong Li or Fuxiang Zhang.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, J., Qi, Y., Bao, Y. et al. Reversed configuration of photocatalyst to exhibit improved properties of basic processes compared to conventional one. Sci. China Chem. 63, 771–776 (2020). https://doi.org/10.1007/s11426-020-9752-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9752-x

Keywords

Navigation