Skip to main content
Log in

Cytotoxicity, anticancer, and antioxidant properties of mono and bis-naphthalimido β-lactam conjugates

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

This article reports the diastereoselective synthesis of some novel naphthalimido and bis-naphthalimido β-lactam derivatives and a preliminary evaluation of their anticancer properties. The reactions were completely diastereoselective, leading exclusively to the formation of cis-β-lactams 11a–l and trans-bis-β-lactams 16a–g. All of these compounds were obtained in good to excellent yields and their structures were established based on IR, 1H NMR, 13C NMR spectral data, and elemental analysis. Each of the β-lactams was screened for antioxidant and anticancer activities. Our results showed that all the compounds lacked cytotoxicity against HepG2 cells, whereas 16a and 16b exhibited excellent anticancer activity with IC50 values below 191.57 µM on MCF-7 cell line and also, bis-β-lactams 16a–g showed excellent antitumor activity against the TC-1 cell line. Antioxidant experiments of 16a–d by the diphenylpicrylhydrazyl (DPPH) assay showed IC50 values ranging from 7 to 32.3 µg/ml. Interaction of 16a, 16b, 16d–g with calf-thymus DNA (CT-DNA) was also supported by absorption titration studies. The compounds exhibit good binding propensity to CT-DNA and the DNA binding affinity (Kb) of the compounds varies as 16a; 16b; 16e; 16g > 16d; 16f. Interaction of 16d with CT-DNA was also investigated by fluorescence spectroscopy. The results support an intercalative interaction of 16d and 16f and non-intercalation mechanism for 16a, 16b, 16e, and 16g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

MCF-7 :

Breast cancer cells

TC-1 :

Mouse lung epithelial cells

HepG2 :

Liver hepatocellular carcinoma

DPPH:

Diphenylpicrylhydrazyl

ORTEP:

Oak Ridge Thermal Ellipsoid Plot

CT-DNA:

Calf thymus-deoxyribonucleic acid

K b :

binding affinity

IC50:

Half maximal inhibitory concentration

NI:

Naphthalimide

NDI:

1,4,5,8-Naphthalenetetracarboxylicdiimide

MTT:

Methyl thiazol tetrazolium bromide

OD:

Optical density

References

  • Abdel-Aziz AA-M, ElTahir KEH, Asiri YA (2011) Synthesis, anti-inflammatory activity and COX-1/COX-2 inhibition of novel substituted cyclic imides. Part 1: molecular docking study. Eur J Med Chem 46:1648–1655

    CAS  PubMed  Google Scholar 

  • Alami N, Paterson J, Belanger S, Juste S, Grieshaber CK, Leyland-Jones B (2007) Comparative analysis of xanafide cytotoxicity in breast cancer cell lines. Br J Cancer 97:58–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alborz M, Jarrahpour AA, Pournejati R, Karbalaei-Heidari HR, Sinou V, Latour C, Brunel JM, Sharghi H, Aberi M, Turos E, Wojtas L (2018) Synthesis and biological evaluation of some novel diastereoselective benzothiazole β-lactam conjugates. Eur J Med Chem 143:283–291

    CAS  PubMed  Google Scholar 

  • Ameri RJ, Jarrahpour A, Latour CH, Sinou V, Brunel JM, Zgou H, Mabkhot Y, Ben Hadda T, Turos E (2017) Synthesis and antimicrobial/antimalarial activities of novel naphthalimido trans-β-lactam derivatives. Med Chem Res 10:2235–2242

    Google Scholar 

  • Amr AEGE, Sabry NM, Abdulla MM (2007) Synthesis, reactions, and anti-inflammatory activity of heterocyclic systems fused to a thiophene moiety using citrazinic acid as synthon. Monatshefte für Chem Chem Monthly 138:699–707

    CAS  Google Scholar 

  • Anizon F, Belin L, Moreau P, Sancelme M, Voldoire A, Prudhomme M, Ollier M, Severe D, Riou JF, Bailly C, Fabbro D, Thomas M (1997) Syntheses and biological activities (topoisomerase inhibition and antitumor and antimicrobial properties) of rebeccamycin analogues bearing modified sugar moieties and substituted on the imide nitrogen with a methyl group. J Med Chem 21:3456–3465

    Google Scholar 

  • Arif R, Rana M, Yasmeen S, Khan MS, Abid M, Khan MS (2020) Facile synthesis of chalcone derivatives as antibacterial agents: synthesis, DNA binding, molecular docking, DFT and antioxidant studies. J Mol Struct 1208:127905

    Google Scholar 

  • Arunadevi A, Porkodi J, Ramgeetha L, Raman N (2019) Biological evaluation, molecular docking and DNA interaction studies of coordination compounds gleaned from a pyrazolone incorporated ligand. Nucleosides Nucleotides Nucleic Acids 38:656–679

    CAS  PubMed  Google Scholar 

  • Arya N, Jagdale AY, Patil TA, Yeramwar SS, Holikatti SS, Dwivedi J, Shishoo CJ, Jain KS (2014) The chemistry and biological potential of azetidin-2-ones. Eur J Med Chem 74:619–656

    CAS  PubMed  Google Scholar 

  • Arya S, Kumar S, Rani R, Kumar N, Roy P, Sondhi S (2013) Synthesis, anti-inflammatory, and cytotoxicity evaluation of 9,10-dihydroanthracene-9,10-α,β-succinimide and bis-succinimide derivatives. Med Chem Res 22:4278–4285

    CAS  Google Scholar 

  • Ayati A, Bakhshaiesh TO, Moghimi S, Esmaeili R, Majidzadeh-A K, Safavi M, Firoozpour L, Emami S, Foroumadi A (2018) Synthesis and biological evaluation of new coumarins bearing 2, 4-diaminothiazole-5-carbonyl moiety. Eur J Med Chem 155:483–491

    CAS  PubMed  Google Scholar 

  • Banerjee S, Kitchen JA, Gunnlaugsson T, Kelly JM (2013) The effect of the 4-amino functionality on the photophysical and DNA binding properties of alkyl-pyridinium derived 1,8-naphthalimides. Org Biomol Chem 11:5642–5655

    CAS  PubMed  Google Scholar 

  • Baraldi PG, Preti D, Fruttarolo F, Tabrizi MA, Romagnoli R (2007) Hybrid molecules between distamycin A and active moieties of antitumor agents. Bioorg Med Chem 15:17–35

    CAS  PubMed  Google Scholar 

  • Baraldi PG, Romagnoli R, Guadix AE, Pineda de las Infantas MJ, Gallo MA, Espinosa A, Martinez A, Bingham JP, Hartley JA (2002) Design, synthesis, and biological activity of hybrid compounds between uramustine and DNA minor groove binder distamycin A. J Med Chem 45:3630–3638

    CAS  PubMed  Google Scholar 

  • Benzie IFF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth Enzymol 299:15–27

    CAS  Google Scholar 

  • Berlinck RG, Britton R, Piers E, Lim L, Roberge M, Moreira da Rocha R, Andersen RJ (1998) Granulatimide and isogranulatimide, aromatic alkaloids with G2 checkpoint inhibition activity isolated from the Brazilian ascidian Didemnum granulatum: structure elucidation and synthesis. J Org Chem 63:9850–9856

    CAS  Google Scholar 

  • Bhat SS, Kumbhar AA, Heptullah H, Khan AA, Gobre VV, Gejji SP, Puranik VG (2010) Synthesis, electronic structure, DNA and protein binding, DNA cleavage, and anticancer activity of fluorophore-labeled copper (II) complexes. Inorg Chem 50:545–558

    PubMed  Google Scholar 

  • Borazjani N, Jarrahpour A, Ameri Rad J, Mohkam M, Behzadi M, Ghasemi Y, Mirzaeinia S, Karbalaei-Heidari HR, Ghanbari MM, Batta G, Turos E (2019a) Design, synthesis and biological evaluation of some novel diastereoselective β-lactams bearing 2-mercaptobenzothiazole and benzoquinoline. Med Chem Res 28:329–339

    CAS  Google Scholar 

  • Borazjani N, Sepehri S, Behzadi M, Jarrahpour A, Ameri Rad J, Sasanipour M, Mohkam M, Ghasemi Y, Akbarizadeh AR, Digiorgio C, Brunel JM, Ghanbari MM, Batta G, Turos E (2019b) Three-component synthesis of chromeno β-lactam, Eur. J Med Chem 179:389–403

    CAS  Google Scholar 

  • Cossio FP, Ugalde JM, Lopez X, Lecea B, Palomo C (1993) A semiempirical theoretical study on the formation of β-lactams from ketenes and imines. J Am Chem Soc 115:995–1004

    CAS  Google Scholar 

  • De Oliveira KN, Chiaradia LD, Martins PGA, Mascarello A, Cordeiro MNS, Guido RVC, Andricopulo AD, Yunes RA, Nunes RJ, Vernal J, Terenzi H (2011) Sulfonyl-hydrazones of cyclic imides derivatives as potent inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase B (PtpB). MedChemComm 2:500–504

    Google Scholar 

  • El-Azab AS, Alanazi AM, Abdel-Aziz NI, Al-Suwaidan IA, El-Sayed MAA, El-Sherbeny MA, Abdel-Aziz AAM (2013) Synthesis, molecular modeling study, preliminary antibacterial, and antitumor evaluation of N-substituted naphthalimides and their structural analogues. Med Chem Res 22:2360–2375

    CAS  Google Scholar 

  • Galletti P, Soldati R, Pori M, Durso M, Tolomelli A, Gentilucci L, Dattoli SD, Baiula M, Spampinato S, Giacomini D (2014) Targeting integrins αvβ3 and α5β1 with new β-lactam derivatives. Eur J Med Chem 83:284–293

    CAS  PubMed  Google Scholar 

  • Ge C, Chang L, Zhao Y, Chang C, Xu X, He H, Wang Y, Dai F, Xie S, Wang C (2017) Design, synthesis and evaluation of naphthalimide derivatives as potential anticancer agents for hepatocellular carcinoma. Molecules 22:342

    PubMed Central  Google Scholar 

  • Geesala R, Gangasani JK, Budde M, Balasubramanian S, Vaidya JR, Das A (2016) 2-Azetidinones: Synthesis and biological evaluation as potential anti-breast cancer agents. Eur J Med Chem 124:544–558

    CAS  PubMed  Google Scholar 

  • Gudeika D, Lygaitis R, Gražulevičius JV, Kublickas RH, Rubežienė V, Vedegytė J (2012) Synthesis and properties of dimeric naphthalene diimides. Chemija 23:233–238

    CAS  Google Scholar 

  • Hénon H, Messaoudi S, Anizon F, Aboab B, Kucharczyk N, Léonce S, Golsteyn R, Pfeiffer MB, Prudhomme M (2007) Bis-imide granulatimide analogues as potent checkpoint 1 kinase inhibitors. Eur J Pharm 554:106–112

    Google Scholar 

  • Iraji A, Firuzi O, Khoshneviszadeh M, Nadri H, Edraki N, Miri R (2018) Synthesis and structure-activity relationship study of multi-target triazine derivatives as innovative candidates for treatment of Alzheimer’s disease. Bioorg Chem 77:223–235

    CAS  PubMed  Google Scholar 

  • Kamal A, Reddy BSN, Reddy GSK, Ramesh G (2002) Design and synthesis of C-8 linked pyrrolobenzodiazepine–naphthalimide hybrids as anti-tumour agents. Bioorg Med Chem Lett 12:1933–1935

    CAS  PubMed  Google Scholar 

  • Kamboj VK, Kapoor A, Jain S (2019) Synthesis, antimicrobial, and antioxidant screening of aryl acetic acid incorporated 1,2,4‐triazolo‐1,3,4‐thiadiazole derivatives. J Heterocycl Chem 56:1376–1382

    CAS  Google Scholar 

  • Kianpour S, Ebrahiminezhad A, Mohkam M, Tamaddon AM, Dehshahri A, Heidari R, Ghasemi Y (2017) Physicochemical and biological characteristics of the nanostructured polysaccharide-iron hydrogel produced by microorganism Klebsiella oxytoca. J Basic Microbiol 57:132–140

    CAS  PubMed  Google Scholar 

  • Kianpour S, Ebrahiminezhad A, Negahdaripour M, Mohkam M, Mohammadi F, Niknezhad SV (2018) Y. Ghasemi, Characterization of biogenic Fe (III)-binding exopolysaccharide nanoparticles produced by Ralstonia sp. SK03. Biotech Prog 34:1167–76

    CAS  Google Scholar 

  • Kostova I, Bhatia S, Grigorov P, Balkansky S, Parmar VS, Prasad AK, Saso L (2011) Coumarins as antioxidants. Curr Med Chem 18:3929–3951

    CAS  PubMed  Google Scholar 

  • Kumar Gupta R, Pandey R, Sharma G, Prasad R, Koch B, Srikrishna S, Li PZ, Xu Q, Pandey DS (2013) DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4‑(2-methoxypyridyl)phenyldipyrromethene. Inorg Chem 52:3687–3698

    Google Scholar 

  • Kumar A, Banerjee S, Roy P, Sondhi SM, Sharma A (2017) Solvent free, catalyst free, microwave or grinding assisted synthesis of bis-cyclic imide derivatives and their evaluation for anticancer activity. Bioorg Med Chem Lett 27:501–504

    CAS  PubMed  Google Scholar 

  • Landa A, Mielgo A, Oiarbide M, Palomo C (2018) Asymmetric synthesis of β‐lactams by the Staudinger reaction. Organic reactions. John Wiley & Sons, Hobokenpp, p 1–123

    Google Scholar 

  • Laronze M, Boisbrun M, Leonce S, Pfeiffer B, Renard P, Lozach O, Meijer L, Lansiaux A, Bailly C, Sapi J, Laronzea JY (2005) Synthesis and anticancer activity of new pyrrolocarbazoles and pyrrolo-β-carbolines. Bioorg Med Chem 13:2263–2283

    CAS  PubMed  Google Scholar 

  • Li Q, Fang H, Wang X, Xu W (2010) Novel cyclic-imide peptidomimetics as aminopeptidase N inhibitors. Structure-based design, chemistry and activity evaluation. Eur J Med Chem 45:1618–1626

    CAS  PubMed  Google Scholar 

  • Li Y, Li Y, Liu X, Yang Y, Lin D, Gao Q (2020) The synthesis, characterization, DNA/protein interaction, molecular docking and catecholase activity of two Co (II) complexes constructed from the aroylhydrazone ligand. J Mol Struct 1202:127229

    CAS  Google Scholar 

  • Li S, Xu S, Tang Y, Ding S, Zhang J, Wang S, Zhou G, Zhou C, Li X (2014). Synthesis, anticancer activity and DNA-binding properties of novel 4-pyrazolyl-1,8-naphthalimide derivatives. Bioorg Med Chem Lett 24:586–590

    CAS  PubMed  Google Scholar 

  • Machado KE, de Oliveira KN, Santos-Bubniak L, Licinio MA, Nunes RJ, Santos-Silva MC (2011) Evaluation of apoptotic effect of cyclic imide derivatives on murine B16F10 melanoma cells. Bioorg Med Chem 19:6285–6291

    CAS  PubMed  Google Scholar 

  • Malterud KE, Farbrot TL, Huse AE, Sund RB (1993) Antioxidant and radical scavenging effects of anthraquinones and anthrones. Pharmacol 47:77–85

    CAS  Google Scholar 

  • Mandegani Z, Asadi Z, Asadi M, Karbalaei-Heidari HR, Rastegari B (2016) Synthesis, characterization, DNA binding, cleavage activity, cytotoxicity and molecular docking of new nano water-soluble [M(5-CH2PPh3-3,4-salpyr)](ClO4)2 (M = Ni, Zn) complexes. Dalton Trans 15:6592–6611

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208-IN1

    Google Scholar 

  • Milelli A, Tumiatti V, Micco M, Rosini M, Zuccari G, Raffaghello L, Bianchi G, Pistoia V, Díaz JF, Pera B, Trigili C (2012) Structure–activity relationships of novel substituted naphthalene diimides as anticancer agents. Eur J Med Chem 57:417–428

    CAS  PubMed  Google Scholar 

  • Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R, Jemal A (2016) Cancer treatment and survivorship statistics. CA Cancer J Clin 66:271–289

    PubMed  Google Scholar 

  • Mondal S, Samajdar RN, Mukherjee S, Bhattacharyya AJ, Bagchi B (2018) Unique eatures of metformin: A combined experimental, theoretical, and simulation study of its structure, dynamics, and interaction energetics with DNA grooves. J Phys Chem B 122:227–2242

    Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  PubMed  Google Scholar 

  • Palomo C, Aizpurua JM, Ganboa I, Oiarbide M (2004) Asymmetric synthesis of β-lactams through the Staudinger reaction and their use as building blocks of natural and nonnatural products. Curr Med Chem 11:1837–1872

    CAS  PubMed  Google Scholar 

  • Parul DM, Sengar NPS, Pathak AK (2010) 2-Azetidinone A new profile of pharmacological activities. Eur J Med Chem 45:5541–5560

    Google Scholar 

  • Riss TL, Moravec RA, Niles AL, Benink HA, Worzella TJ, Minor L (2013) Cell viability assays, assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, MD, USA, p 1–23

    Google Scholar 

  • Rowan NJ, Deans K, Anderson JG, Gemmell CG, Hunter IS, Chaithong T (2001) Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae. Appl Environ Microbiol 67:3873–3881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Said SA, Amr AEGE, Sabry NM, Abdalla MM (2009) Analgesic, anticonvulsant and anti-inflammatory activities of some synthesized benzodiazipine, triazolopyrimidine and bis-imide derivatives. Eur J Med Chem 44:4787–4792

    CAS  PubMed  Google Scholar 

  • Shaikh SKJ, Kamble RR, Somagond SM, Devarajegowda HC, Dixit SR, Joshi SD (2017) Tetrazolylmethyl quinolines: Design, docking studies, synthesis, anticancer and antifungal analyses. Eur J Med Chem 128:258–273

    CAS  PubMed  Google Scholar 

  • Suh D, Chaires JB (1995) Criteria for the mode of binding of DNA binding agents. Bioorg Med Cehm 3:723–728

    CAS  Google Scholar 

  • Tomczyk MD, Walczak KZ (2018) l,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur J Med Chem 159:393–422

    CAS  PubMed  Google Scholar 

  • Tumiatti V, Milelli A, Minarini A, Micco M, Gasperi Campani A, Roncuzzi L, Baiocchi D, Marinello J, Capranico G, Zini M, Stefanelli C (2009) Design, synthesis, and biological evaluation of substituted naphthalene imides and diimides as anticancer agent. J Med Chem 52:7873–7877

    CAS  PubMed  Google Scholar 

  • Wang LJ, Geng CA, MA YB, Luo J, Huang XY, Chen H, Zhou NJ, Zhang XM, Chen JJ (2012) Design, synthesis, and molecular hybrids of caudatin and cinnamic acids as novel anti-hepatitis B virus agents. Eur J Med Chem 54:352–365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westrip SP (2010) publCIF: Software for editing, validating and formatting crystallographic information files. J Appl Crys 43:920–925

    CAS  Google Scholar 

  • Xiao H, Chen M, Shi G, Wang L, Yin H, Mei C (2010) A novel fluorescent molecule based on 1, 8-naphthalimide: synthesis, spectral properties, and application in cell imaging. Res Chem Intermed 36:1021–1026

    CAS  Google Scholar 

  • Yazdani M, Edraki N, Badri R, Khoshneviszadeh M, Iraji A, Firuzi O (2019) Multi-target inhibitors against Alzheimer disease derived from 3-hydrazinyl 1, 2, 4-triazine scaffold containing pendant phenoxy methyl-1, 2, 3-triazole: Design, synthesis and biological evaluation. Bioorg Chem 84:363–371

    CAS  PubMed  Google Scholar 

  • Zanoza SO, Klimenko KO, Maltzev GV, Bykova TI, Levandovskiy IA, Lyakhov SA (2019) Aminoalkoxyfluorenones and aminoalkoxybiphenyls: DNA binding modes. Bioorg Chem 86:52–60

    CAS  PubMed  Google Scholar 

  • Zhang G, Shen J, Cheng H, Zhu L, Fang L, Luo S, Muller MT, Lee GE, Wei L, Du Y, Sun D (2005) Syntheses and biological activities of rebeccamycin analogues with uncommon sugars. J Med Chem 48:2600–2611

    CAS  PubMed  Google Scholar 

  • Zsila F, Bikádi Z, Simonyi M (2004) Circular dichroism spectroscopic studies reveal pH dependent binding of curcumin in the minor groove of natural and synthetic nucleic acids. Org Biomol Chem 2:2902–2910

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Shiraz University Research Council for financial support (Grant no. 97-GR-SC-23) and Dr. Attila Benyei for collecting X-ray data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasghar Jarrahpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borazjani, N., Behzadi, M., Dadkhah Aseman, M. et al. Cytotoxicity, anticancer, and antioxidant properties of mono and bis-naphthalimido β-lactam conjugates. Med Chem Res 29, 1355–1375 (2020). https://doi.org/10.1007/s00044-020-02552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02552-1

Keywords

Navigation