Skip to main content

Advertisement

Log in

Cerebellar degeneration in adult spinal muscular atrophy patients

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Spinal muscular atrophy (SMA) is a genetic motor neuron disease related to deletions in the SMN1 gene. There is mounting evidence that the disease is not restricted to motor neurons. In this neuroimaging study, we aimed to investigate the presence of in-vivo cerebellar damage in adult SMA patients not treated with disease-modifying treatment.

Methods

Twenty-five molecularly confirmed patients with SMA type III or IV and 25 healthy controls underwent MRI with cerebellar focused structural analysis by the CERES automated pipeline. Volumetry (total and gray matter—GM) as well as cortical thickness of the cerebellar lobules were compared in both groups. Full clinical and demographic data were then assessed for correlations with cerebellar imaging findings.

Results

Volumes of cerebellar lobules VIIIB (right), IX and X were significantly smaller in patients with SMA. Lobule IX also had GM atrophy in comparison to controls. We found no significant correlation between clinical findings and cerebellar damage.

Conclusions

Neuroimaging detects cerebellar structural changes in adult SMA patients, suggesting that neurodegeneration is not confined to the lower motor neurons in the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lefebvre S, Bürglen L, Reboullet S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165. https://doi.org/10.1016/0092-8674(95)90460-3

    Article  CAS  PubMed  Google Scholar 

  2. Towfighi J, Young RS, Ward RM (1985) Is Werdnig-Hoffmann disease a pure lower motor neuron disorder? Acta Neuropathol 65:270–280. https://doi.org/10.1007/bf00687008

    Article  CAS  PubMed  Google Scholar 

  3. Kuru S, Sakai M, Konagaya M et al (2009) An autopsy case of spinal muscular atrophy type III (Kugelberg-Welander disease). Neuropathology 29:63–67. https://doi.org/10.1111/j.1440-1789.2008.00910.x

    Article  PubMed  Google Scholar 

  4. Mercuri E, Finkel RS, Muntoni F et al (2018) Diagnosis and management of spinal muscular atrophy: Part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 28:103–115. https://doi.org/10.1016/j.nmd.2017.11.005

    Article  PubMed  Google Scholar 

  5. Elsheikh B, Prior T, Zhang X et al (2009) An analysis of disease severity based on SMN2 copy number in adults with spinal muscular atrophy. Muscle Nerve 40:652–656. https://doi.org/10.1002/mus.21350

    Article  PubMed  Google Scholar 

  6. Mendonça RH, Rocha AJ, Lozano-Arango A et al (2019) Severe brain involvement in 5q spinal muscular atrophy type 0. Ann Neurol 86:458–462. https://doi.org/10.1002/ana.25549

    Article  CAS  PubMed  Google Scholar 

  7. Wadman RI, van der Pol WL, Bosboom WM et al (2020) Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 1:CD006282

    PubMed  Google Scholar 

  8. Hoy SM (2018) Nusinersen: a review in 5q spinal muscular atrophy. CNS Drugs 32:689–696. https://doi.org/10.1007/s40263-018-0545-1

    Article  PubMed  Google Scholar 

  9. Zhang Z, Lotti F, Dittmar K et al (2008) SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133:585–600. https://doi.org/10.1016/j.cell.2008.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mentis GZ, Blivis D, Liu W et al (2011) Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69:453–467. https://doi.org/10.1016/j.neuron.2010.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Devriendt K, Lammens M, Schollen E et al (1996) Clinical and molecular genetic features of congenital spinal muscular atrophy. Ann Neurol 40:731–738. https://doi.org/10.1002/ana.410400509

    Article  CAS  PubMed  Google Scholar 

  12. Maeda K, Chong PF, Yamashita F et al (2019) Global central nervous system atrophy in spinal muscular atrophy type 0. Ann Neurol 86:801–802

    Article  Google Scholar 

  13. Querin G, El Mendili MM, Lenglet T et al (2019) The spinal and cerebral profile of adult spinal-muscular atrophy: a multimodal imaging study. NeuroImage Clin 21:101618. https://doi.org/10.1016/j.nicl.2018.101618

    Article  PubMed  Google Scholar 

  14. Vuillerot C, Payan C, Iwaz J et al (2013) Responsiveness of the motor function measure in patients with spinal muscular atrophy. Arch Phys Med Rehabil 94:1555–1561. https://doi.org/10.1016/j.apmr.2013.01.014

    Article  PubMed  Google Scholar 

  15. Elsheikh B, King W, Arnold W, Kissel J (2018) Reliability of spinal muscular atrophy functional rating scale (SMAFRS) in ambulatory adults with spinal muscular atrophy. (P4.452). Neurology 90

  16. Leite MAA, Orsini M, de Freitas MRG et al (2014) Another perspective on fasciculations: when is it not caused by the classic form of amyotrophic lateral sclerosis or progressive spinal atrophy? Neurol Int 6:47–51. https://doi.org/10.4081/ni.2014.5208

    Article  Google Scholar 

  17. De Carvalho M, Kiernan MC, Swash M (2017) Fasciculation in amyotrophic lateral sclerosis: origin and pathophysiological relevance. J Neurol Neurosurg Psychiatr 88:773–779

    Article  Google Scholar 

  18. De Carvalho M, Swash M (2013) Origin of fasciculations in amyotrophic lateral sclerosis and benign fasciculation syndrome. JAMA Neurol 70:1562–1565. https://doi.org/10.1001/jamaneurol.2013.4437

    Article  PubMed  Google Scholar 

  19. Romero JE, Coupé P, Giraud R et al (2017) CERES: a new cerebellum lobule segmentation method. Neuroimage 147:916–924. https://doi.org/10.1016/j.neuroimage.2016.11.003

    Article  PubMed  Google Scholar 

  20. Carass A, Cuzzocreo JL, Han S et al (2018) Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. Neuroimage 183:150–172. https://doi.org/10.1016/j.neuroimage.2018.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  21. Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138. https://doi.org/10.1016/j.neuroimage.2006.05.056

    Article  PubMed  Google Scholar 

  22. Diedrichsen J, Balsters JH, Flavell J et al (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46. https://doi.org/10.1016/j.neuroimage.2009.01.045

    Article  PubMed  Google Scholar 

  23. Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844. https://doi.org/10.1016/j.cortex.2009.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121(Pt 4):561–579

    Article  Google Scholar 

  25. Stoodley CJ, Valera EM, Schmahmann JD (2012) Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59:1560–1570. https://doi.org/10.1016/j.neuroimage.2011.08.065

    Article  PubMed  Google Scholar 

  26. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039

    Article  PubMed  Google Scholar 

  27. Gellersen HM, Guo CC, O’callaghan C et al (2017) Cerebellar atrophy in neurodegeneration: a meta-analysis. J Neurol Neurosurg Psychiatr 88:780–788. https://doi.org/10.1136/jnnp-2017-315607

    Article  Google Scholar 

  28. Fletcher EV, Simon CM, Pagiazitis JG et al (2017) Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy. Nat Neurosci 20:905–916. https://doi.org/10.1038/nn.4561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prell T, Grosskreutz J (2013) The involvement of the cerebellum in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Front Degener 14:507–515

    Article  CAS  Google Scholar 

  30. Consonni M, Dalla Bella E, Nigri A et al (2019) Cognitive syndromes and C9orf72 mutation are not related to cerebellar degeneration in amyotrophic lateral sclerosis. Front Neurosci. https://doi.org/10.3389/fnins.2019.00440

    Article  PubMed  PubMed Central  Google Scholar 

  31. Montembeault M, Sayah S, Rinaldi D et al (2020) Cognitive inhibition impairments in presymptomatic C9orf72 carriers. J Neurol Neurosurg Psychiatr 2019:322242. https://doi.org/10.1136/jnnp-2019-322242

    Article  Google Scholar 

  32. Vaughan SK, Kemp Z, Hatzipetros T et al (2015) Degeneration of proprioceptive sensory nerve endings in mice harboring amyotrophic lateral sclerosis-causing mutations. J Comp Neurol 523:1. https://doi.org/10.1002/cne.23906

    Article  CAS  Google Scholar 

  33. Pugdahl K, Fuglsang-Frederiksen A, De Carvalho M et al (2007) Generalised sensory system abnormalities in amyotrophic lateral sclerosis: a European multicentre study. J Neurol Neurosurg Psychiatr 78:746–749. https://doi.org/10.1136/jnnp.2006.098533

    Article  CAS  Google Scholar 

  34. Amoiridis G, Tsimoulis D, Ameridou I (2008) Clinical, electrophysiologic, and pathologic evidence for sensory abnormalities in als. Neurology 71:779

    Article  Google Scholar 

  35. Rezende TJR, Martinez ARM, Faber I et al (2019) Developmental and neurodegenerative damage in Friedreich’s ataxia. Eur J Neurol 26:483–489. https://doi.org/10.1111/ene.13843

    Article  CAS  PubMed  Google Scholar 

  36. Rezende TJR, De Albuquerque M, Lamas GM et al (2015) Multimodal mri-based study in patients with SPG4 mutations. PLoS ONE 10:e0117666. https://doi.org/10.1371/journal.pone.0117666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mitoma H, Buffo A, Gelfo F et al (2020) Consensus paper. Cerebellar reserve: from cerebellar physiology to cerebellar disorders. Cerebellum 19:131–153. https://doi.org/10.1007/s12311-019-01091-9

    Article  CAS  PubMed  Google Scholar 

  38. Konczak J, Schoch B, Dimitrova A et al (2005) Functional recovery of children and adolescents after cerebellar tumour resection. Brain 128:1428–1441. https://doi.org/10.1093/brain/awh385

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Rosa Marcuso and Dr. Carlos Roberto Martins Jr. for the invaluable advice on statistical analysis and study design. We thank Mm. Sophie Blancho (IRME) for the management of the project. We thank the clinicians who recruited patients (Drs Pascal Laforet, Tanya Stojkovic, Anthony Behin, François Salachas, Nadine le Forestiers). We also acknowledge the kindness and willingness of our patients and volunteer healthy controls for contributing to science and a greater good.

Funding

This study was supported by the Association Française contre les Myopathies (AFM) and the Institut pour la Recherche sur la Moelle épinière et l’Encéphale (IRME). The research leading to these results has also received funding from the program “Investissements d’avenir” ANR 10-IAIHU-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-François Pradat.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures of this study followed the institution’s ethic committee standards and the Declaration of Helsinki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Borba, F.C., Querin, G., França, M.C. et al. Cerebellar degeneration in adult spinal muscular atrophy patients. J Neurol 267, 2625–2631 (2020). https://doi.org/10.1007/s00415-020-09875-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-09875-4

Keywords

Navigation