Skip to main content
Log in

A Comparative Fluxmetric (CFM) Method for Apparent Thermal Conductivity Measurement of Insulating Materials at High Temperature

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This article presents a simple thermal characterization method, noted CFM, for the measurement of the apparent thermal conductivity of insulating materials at high temperature (i.e., up to 600 °C). The CFM method is a steady-state relative measurement method which requires a calibration. The calibration of the experimental apparatus was done with a calcium silicate board of known thermal conductivity. Thermal conductivity measurements were carried out on a low-density compressible fibrous felt and a high-density calcium silicate board between 100 and 600 °C. A good agreement was observed with the values obtained with the guarded hot-plate (GHP) method for the low-density fibrous felt and the parallel hot-wire (PHW) method for the high-density calcium silicate board. The measurement of the apparent thermal conductivities of low-density fibrous felts of different apparent densities, combined with a simple conducto-radiative model, allowed to estimate a mean specific extinction coefficient in good agreement with a value derived from transmittance/reflectance measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

Not applicable

References

  1. S. Whitaker, The Method of Volume Averaging, 1st edn. (Springer, Netherlands, 1999)

    Book  Google Scholar 

  2. Y. Jannot, A. Degiovanni, Thermal Properties Measurement of Materials, 1st edn. (ISTE, London, 2018), pp. 259–266

    Book  Google Scholar 

  3. ISO 8302:1991 (1991)

  4. D.R. Salmon, Meas. Sci. Technol. 12, 12 (2001)

    Article  Google Scholar 

  5. B. Hay, J. Hameury, J.R. Filtz, F. Haloua, R. Morice, High Temp. High Press. 39, 3 (2010)

    Google Scholar 

  6. ISO 8301:1991 (1991)

  7. U. Hammerschmidt, J. Hameury, R. Strnad, E. Turzo-Andras, J. Wu, Int. J. Thermophys. 36, 7 (2015)

    Article  Google Scholar 

  8. D.R. Salmon, R.P. Tye, N. Lockmuller, Meas. Sci. Technol. 20, 015101 (2009)

    Article  ADS  Google Scholar 

  9. D.R. Salmon, R.P. Tye, N. Lockmuller, Meas. Sci. Technol. 20, 015102 (2009)

    Article  ADS  Google Scholar 

  10. Y. Jannot, V. Felix, A. Degiovanni, Meas. Sci. Technol. 21, 035106 (2010)

    Article  ADS  Google Scholar 

  11. Y. Jannot, A. Degiovanni, V. Grigorova-Moutiers, J. Godefroy, Meas. Sci. Technol. 28, 015008 (2017)

    Article  ADS  Google Scholar 

  12. Y. Jannot, A. Degiovanni, G. Payet, Int. J. Heat Mass Transf. 52, 1105–1111 (2009)

    Article  Google Scholar 

  13. S.A. Bahrani, Y. Jannot, A. Degiovanni, J. Appl. Ph. 116, 14 (2014)

    Google Scholar 

  14. Y. Jannot, S. Schaefer, A. Degiovanni, J. Bianchin, V. Fierro, A. Celzard, Rev. Sci. Instrum. 90, 054901 (2019)

    Article  ADS  Google Scholar 

  15. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, J. Appl. Phys. 32, 1679–1684 (1961)

    Article  ADS  Google Scholar 

  16. L. Vozar, W. Hohenauer, High Temp. High Press. 35–36, 3 (2004)

    Google Scholar 

  17. S.E. Gustafsson, Rev. Sci. Instrum. 62, 3 (1991)

    Article  Google Scholar 

  18. ISO 22007-2:2015 (2015)

  19. Hot disk, Mica sensors. https://www.hotdiskinstruments.com/products-services/sensors/mica-sensors/. Accessed 23 Feb 2020

  20. A. Elkholy, H. Sadek, R. Kempers, Int. J. Therm. Sci. 135, 362–374 (2019)

    Article  Google Scholar 

  21. R. Coquard, D. Baillis, D. Quenard, Int. J. Heat Mass Transf. 49, 4511 (2006)

    Article  Google Scholar 

  22. C. Kang, Y.H. Park, J.T. Van Lew, A. Ying, M. Abdou, S. Cho, Fusion Sci. Technol. 72, 263–270 (2017)

    Google Scholar 

  23. ISO 8894-2:2007 (2007)

  24. Y. Jannot, A. Degiovanni, Int. J. Therm. Sci. 142, 379–391 (2019)

    Article  Google Scholar 

  25. R. Coquard, E. Coment, G. Flasquin, D. Baillis, Int. J. Therm. Sci. 65, 242–253 (2013)

    Article  Google Scholar 

  26. Q. Zheng, S. Kaur, C. Dames, R.S. Prasher, Int. J. Heat Mass Transf. 151, 119331 (2020)

    Article  Google Scholar 

  27. H.P. Ebert, F. Hemberger, Int. J. Therm. Sci. 50, 1838–1844 (2011)

    Article  Google Scholar 

  28. M.N. Ozisik, Radiative Transfer and Interactions with Conduction and Convection (John Wiley & Sons, New York, 1973)

    Google Scholar 

  29. R.G. Deissler, J. Heat Transfer 86, 2 (1964)

    Google Scholar 

  30. F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th edn. (Wiley, New York, 2007)

    Google Scholar 

  31. O.A. Sergeev, A.G. Shashkov, A.S. Umanskii, J. Eng. Ph. 43, 4211 (1982)

    Google Scholar 

  32. Y. Maanane, M. Roger, A. Delmas, M. Galtier, F. André, Identification of radiative properties of a Quartzel sample on symbolic Monte Carlo methods. In: Proceedings of 9th International Symposium on Radiative Transfer (RAD19), ISBN: 978-1-56700-479-3 (2019)

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

YJ, VS and IB worked on the design of the CFM method and on the choice of the different equipments and materials. YJ and JM carried out the uncertainty calculations. MC and JM carried out the experimental study. YJ, JM and VS realized the interpretation of the results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Y. Jannot.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jannot, Y., Meulemans, J., Schick, V. et al. A Comparative Fluxmetric (CFM) Method for Apparent Thermal Conductivity Measurement of Insulating Materials at High Temperature. Int J Thermophys 41, 94 (2020). https://doi.org/10.1007/s10765-020-02676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02676-x

Keywords

Navigation