Skip to main content
Log in

Transcriptomics analyses reveal that OsMIOX improves rice drought tolerance by regulating the expression of plant hormone and sugar related genes

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Drought stress, as a key negative factor, could result in the reduction of yield and quality in rice. Myo-inositol oxygenase (MIOX), a unique monooxygenase, exerts an essential role in plant drought resistance. To investigate the function of the OsMIOX gene in drought process, a transcriptomic profile between OsMIOX-overexpressing (OE) plants and wild-type (WT) was performed by RNA-sequencing in rice. Under drought stress, a total of 23 million high-quality reads, assembled into 28,552 unigenes, were generated and 743 genes (534 up-regulated and 209 down-regulated) were significantly differentially expressed between OE plants and WT. These detected genes were mainly associated with plant hormones transduction and sugar metabolism. Interestingly, several transcription factors (TFs) were prominently identified in OE lines. A significant positive correlation between RNA-Seq data and qRT-PCR results was identified. In all, our results could partially provide relatively valuable clues in identifying candidate genes involved in drought-stress resistance and elucidating basis theory underlying the role of OsMIOX in drought resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51(3):363–372

    PubMed  Google Scholar 

  • Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2014) Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnol Rep 8(3):279–293

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7(7):1099–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    CAS  PubMed  Google Scholar 

  • Cai S, Jiang G, Ye N, Chu Z, Xu X, Zhang J, Zhu G (2015) A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice. PLoS ONE 10(2):e116646

    Google Scholar 

  • Cheng AX, Xiang CY, Li JX, Yang CQ, Hu WL, Wang LJ, Lou YG, Chen XY (2007) The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 68(12):1632–1641

    CAS  PubMed  Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17(10):594

    CAS  PubMed  Google Scholar 

  • Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2015) DCA1 acts as a transcriptional co-activator of DST and contributes to drought and salt tolerance in rice. PLoS Genet 11(10):e1005617

    PubMed  PubMed Central  Google Scholar 

  • Danquah A, De ZA, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32(1):40

    CAS  PubMed  Google Scholar 

  • Dhakarey R, Raorane ML, Treumann A, Peetambaran PK, Schendel RR, Sahi VP, Hause B, Bunzel M, Henry A, Kohli A, Riemann M (2017) Physiological and proteomic analysis of the rice mutant cpm2 suggests a negative regulatory role of jasmonic acid in drought tolerance. Front Plant Sci 8:1903

    PubMed  PubMed Central  Google Scholar 

  • Duan J, Zhang M, Zhang H, Xiong H, Liu P, Ali J, Li J, Li Z (2012) OsMIOX, a myo -inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Sci 196(11):143–151

    CAS  PubMed  Google Scholar 

  • Fang L, Su L, Sun X, Li X, Sun M, Karungo SK, Shuang F, Chu J, Li S, Xin H (2016) Expression of vitisamurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J Exp Bot 67(9):2829–2845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fehlmann T, Reinheimer S, Geng C, Su X, Drmanac S, Alexeev A, Zhang C, Backes C, Ludwig N, Hart M (2016) cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs. Clin Epigenet 8(1):123

    Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchishinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124(4):509–525

    CAS  PubMed  Google Scholar 

  • Gomes FP, Oliva MA, Mielke MS, Almeida AAF, Aquino LA (2010) Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Sci Hortic 126(3):379–384

    CAS  Google Scholar 

  • Gonzálezguzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodríguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14(8):1833

    Google Scholar 

  • He L, Li F, Sha L (2008) Activity of serine/threonine protein phosphatase type-2C (PP2C) and its relationships to drought tolerance in maize. Acta Agronomica Sinica 34(5):899–903

    CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    CAS  PubMed  Google Scholar 

  • Höller S, Ueda Y, Wu L, Wang Y, Hajirezaei MR, Ghaffari MR, Von WN, Frei M (2015) Ascorbate biosynthesis and its involvement in stress tolerance and plant development in rice (Oryza sativa L.). Plant Mol Biol 88(6):545–560

    PubMed  Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23(15):1805–1817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Aljuburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11(1):100–105

    Google Scholar 

  • Jisha V, Dampanaboina L, Vadassery J, Mithöfer A, Kappara S, Ramanan R (2015) Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice. PLoS ONE 10(6):e127831

    Google Scholar 

  • Jwa NS, Agrawal GK, Rakwal R, Park CH, Agrawal VP (2001) Molecular cloning and characterization of a novel jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochem Biophys Res Commun 286(5):973

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2007) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36 (Database issue):480–484

    Google Scholar 

  • Kanter U, Usadel B, Guerineau F, Li Y, Pauly M, Tenhaken R (2005) The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta 221(2):243

    CAS  PubMed  Google Scholar 

  • Kim ST, Yu S, Kang YH, Kim SG, Kim JY, Kim SH, Kang KY (2008) The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Rep 27(3):593–603

    CAS  PubMed  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Method 12(4):357–360

    CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22(11):2623–2633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11(1):1–13

    CAS  Google Scholar 

  • Lenka SK, Katiyar A, Chinnusamy V, Bansal KC (2011) Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol J 9(3):315

    CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12(1):323

    CAS  Google Scholar 

  • Liu W, Tai H, Li S, Gao W, Zhao M, Xie C, Li WX (2014) bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol 201(4):1192–1204

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324(5930):1064–1068

    CAS  PubMed  Google Scholar 

  • Mohammadkhani N, Heidari R (2008) Drought-induced accumulation of soluble sugars and proline in two maize varieties. World Appl Sci J 3(3):448–453

    Google Scholar 

  • Ning J, Li X, Hicks LM, Xiong LZ (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152(2):876–890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324(5930):1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, Dun KV (1999) Enhanced drought resistance in fructan-producing sugar beet. Plant Physiol Biochem 37(4):313–317

    CAS  Google Scholar 

  • Raghavendra A, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15(7):395–401

    CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10(3):296–302

    CAS  PubMed  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65(6):907–921

    CAS  PubMed  Google Scholar 

  • Shao HB, Chu LY, Shao MA, Jaleel CA, Mi HM (2008) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol 331(6):433–441

    CAS  PubMed  Google Scholar 

  • Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52(2):344–360

    CAS  PubMed  Google Scholar 

  • Shi F, Dong Y, Zhang Y, Yang X, Qiu D (2017) Overexpression of the PeaT1 elicitor gene from Alternaria tenuissima improves drought tolerance in rice plants via interaction with a myo-inositol oxygenase. Front Plant Sci 8:970

    PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchishinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417

    CAS  PubMed  Google Scholar 

  • Tao Z, Kou YJ, Liu HB, Li XH, Xiao JH, Wang SP (2011) OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot 62(14):4863–4874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25(2):131

    CAS  PubMed  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE 9(3):e92913

    PubMed  PubMed Central  Google Scholar 

  • Yang W, Yoon J, Choi H, Fan Y, Chen R, An G (2015) Transcriptome analysis of nitrogen-starvation-responsive genes in rice. BMC Plant Biol 15(1):31

    PubMed  PubMed Central  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(53):247–273

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the GDAS’ Project of Science and Technology Development (2019GDASYL-0103032) and the National Natural Science Foundation of China (31672097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fachao Shi.

Ethics declarations

Conflict of interest

This study is not related to any potentially competing financial or other interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

11816_2020_608_MOESM2_ESM.jpg

Fig. S1. Phenotype of OsMIOX OE lines and WT plants under normal and drought conditions. (a) One month old seedlings in normal condition.(b)phenotype of plants rewatered in 3 days after 7 days drought treatment.(c) Seedlings in nutrition solution (d) the photo of seedlings without solution for three days. Supplementary material 2 (JPEG 64 kb)

11816_2020_608_MOESM3_ESM.jpg

Fig. S2.Genes expression level between WT and OsMIOX OE lines by qRT-PCR. Error bars indicate SD (n= 6). Supplementary material 3 (JPEG 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Dong, Y., Wang, M. et al. Transcriptomics analyses reveal that OsMIOX improves rice drought tolerance by regulating the expression of plant hormone and sugar related genes. Plant Biotechnol Rep 14, 339–349 (2020). https://doi.org/10.1007/s11816-020-00608-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-020-00608-7

Keywords

Navigation