Skip to main content
Log in

Short term depression, presynaptic inhibition and local neuron diversity play key functional roles in the insect antennal lobe

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

As the oldest, but least understood sensory system in evolution, the olfactory system represents one of the most challenging research targets in sensory neurobiology. Although a large number of computational models of the olfactory system have been proposed, they do not account for the diversity in physiology, connectivity of local neurons, and several recent discoveries in the insect antennal lobe, a major olfactory organ in insects. Recent studies revealed that the response of some projection neurons were reduced by application of a GABA antagonist, and that insects are sensitive to odor pulse frequency. To account for these observations, we propose a spiking neural circuit model of the insect antennal lobe. Based on recent anatomical and physiological studies, we included three sub-types of local neurons as well as synaptic short-term depression (STD) in the model and showed that the interaction between STD and local neurons resulted in frequency-sensitive responses. We further discovered that the unexpected response of the projection neurons to the GABA antagonist is the result of complex interactions between STD and presynaptic inhibition, which is required for enhancing sensitivity to odor stimuli. Finally, we found that odor discrimination is improved if the innervation of the local neurons in the glomeruli follows a specific pattern. Our findings suggest that STD, presynaptic inhibition and diverse physiology and connectivity of local neurons are not independent properties, but they interact to play key roles in the function of antennal lobes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic depression and cortical gain control. Science, 275, 221–224.

    Google Scholar 

  • Assisi, C., Stopfer, M., & Bazhenov, M. (2012). Excitatory local interneurons enhance tuning of sensory information. PLoS Computational Biology, 8, e1002563.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhandawat, V., Olsen, S. R., Gouwens, N. W., Schlief, M. L., & Wilson, R. I. (2007). Sensory processing in the drosophila antennal lobe increases the reliability and Separability of ensemble odor representations. Nature Neuroscience, 10, 1474–1482.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chou, Y.-H., Spletter, M. L., Yaksi, E., Leong, J. C. S., Wilson, R. I., & Luo, L. (2010). Diversity and wiring variability of olfactory local interneurons in the drosophila antennal lobe. Nature Neuroscience, 13, 439–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • TA Cleland, C Linster (2012) On-center/inhibitory-surround Decorrelation via Intraglomerular inhibition in the olfactory bulb glomerular layer. Frontiers in Integrative Neuroscience 6. Available at: http://www.frontiersin.org/Journal/10.3389/fnint.2012.00005/full [Accessed May 26, 2014].

  • Cleland, T. A., & Sethupathy, P. (2006). Non-topographical contrast enhancement in the olfactory bulb. BMC Neuroscience, 7, 7.

    PubMed  PubMed Central  Google Scholar 

  • de Bruyne, M., Clyne, P. J., & Carlson, J. R. (1999a). Odor coding in a model olfactory organ: The drosophila maxillary palp. The Journal of Neuroscience, 19, 4520–4532.

    PubMed  PubMed Central  Google Scholar 

  • de Bruyne, M., Clyne, P. J., & Carlson, J. R. (1999b). Odor coding in a model olfactory organ: The drosophila maxillary palp. The Journal of Neuroscience, 19, 4520–4532.

    PubMed  PubMed Central  Google Scholar 

  • de Bruyne, M., Foster, K., & Carlson, J. R. (2001). Odor coding in the drosophila antenna. Neuron, 30, 537–552.

    PubMed  Google Scholar 

  • Hallem, E. A., & Carlson, J. R. (2006). Coding of odors by a receptor repertoire. Cell, 125, 143–160.

    CAS  PubMed  Google Scholar 

  • Hempel, C. M., Hartman, K. H., Wang, X.-J., Turrigiano, G. G., & Nelson, S. B. (2000). Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. Journal of Neurophysiology, 83, 3031–3041.

    CAS  PubMed  Google Scholar 

  • Huang, J., Zhang, W., Qiao, W., Hu, A., & Wang, Z. (2010). Functional connectivity and selective odor responses of excitatory local interneurons in drosophila antennal lobe. Neuron, 67, 1021–1033.

    CAS  PubMed  Google Scholar 

  • Huston, S. J., Stopfer, M., Cassenaer, S., Aldworth, Z. N., & Laurent, G. (2015). Neural encoding of odors during active sampling and in turbulent plumes. Neuron, 88, 403–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferis, G. S., Marin, E. C., Stocker, R. F., & Luo, L. (2001). Target neuron prespecification in the olfactory map of drosophila. Nature, 414, 204–208.

    CAS  PubMed  Google Scholar 

  • Kazama, H., & Wilson, R. I. (2008). Homeostatic matching and nonlinear amplification at identified central synapses. Neuron, 58, 401–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazama, H., & Wilson, R. I. (2009). Origins of correlated activity in an olfactory circuit. Nature Neuroscience, 12, 1136–1144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linster, C., & Cleland, T. A. (2010). Decorrelation of odor representations via spike timing dependent plasticity. Frontiers in Computational Neuroscience, 4, 157.

    PubMed  PubMed Central  Google Scholar 

  • Murlis, J., Elkinton, J. S., & Carde, R. T. (1992). Odor plumes and how insects use them. Annual Review of Entomology, 37, 505–532.

    Google Scholar 

  • Nagel, K. I., & Wilson, R. I. (2016). Mechanisms underlying population response dynamics in inhibitory interneurons of the drosophila antennal lobe. The Journal of Neuroscience, 36, 4325–4338.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel, K. I., Hong, E. J., & Wilson, R. I. (2015). Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics. Nature Neuroscience, 18, 56–65.

    CAS  PubMed  Google Scholar 

  • Ohliger-Frerking, P., Wiebe, S. P., Staubli, U., & Frerking, M. (2003). GABAB receptor-mediated presynaptic inhibition has history-dependent effects on synaptic transmission during physiologically relevant spike trains. The Journal of Neuroscience, 23, 4809–4814.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okada, R., Awasaki, T., & Ito, K. (2009). Gamma-aminobutyric acid (GABA)-mediated neural connections in the drosophila antennal lobe. The Journal of Comparative Neurology, 514, 74–91.

    CAS  PubMed  Google Scholar 

  • Olsen, S. R., & Wilson, R. I. (2008). Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature, 452, 956–960.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen, S. R., Bhandawat, V., & Wilson, R. I. (2007). Excitatory interactions between olfactory processing channels in the drosophila antennal lobe. Neuron, 54, 89–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen, S. R., Bhandawat, V., & Wilson, R. I. (2010). Divisive normalization in olfactory population codes. Neuron, 66, 287–299.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park, I. M., Bobkov, Y. V., Ache, B. W., & Príncipe, J. C. (2014). Intermittency coding in the primary olfactory system: A neural substrate for olfactory scene analysis. The Journal of Neuroscience, 34, 941–952.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park, I. J., Hein, A. M., Bobkov, Y. V., Reidenbach, M. A., Ache, B. W., & Principe, J. C. (2016). Neurally encoding time for olfactory navigation. PLoS Computational Biology, 12, e1004682.

    PubMed  PubMed Central  Google Scholar 

  • Raccuglia, D., McCurdy, L. Y., Demir, M., Gorur-Shandilya, S., Kunst, M., Emonet, T., & Nitabach, M. N. (2016). Presynaptic GABA receptors mediate temporal contrast enhancement in drosophila olfactory sensory neurons and modulate odor-driven behavioral kinetics. eNeuro, 3, 0080–16.2016.

    Google Scholar 

  • Rangan, A. V. (2012). Functional roles for synaptic-depression within a model of the Fly antennal lobe. PLoS Computational Biology, 8, e1002622.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reisenman, C. E., Dacks, A. M., & Hildebrand, J. G. (2011). Local interneuron diversity in the primary olfactory center of the moth Manduca sexta. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 653–665.

    PubMed  Google Scholar 

  • Riffell, J. A., Shlizerman, E., Sanders, E., Abrell, L., Medina, B., Hinterwirth, A. J., & Kutz, J. N. (2014). Flower discrimination by pollinators in a dynamic chemical environment. Science, 344, 1515–1518.

    CAS  PubMed  Google Scholar 

  • Seki, Y., Rybak, J., Wicher, D., Sachse, S., & Hansson, B. S. (2010). Physiological and morphological characterization of local interneurons in the drosophila antennal lobe. Journal of Neurophysiology, 104, 1007–1019.

    PubMed  Google Scholar 

  • Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M., & Miesenböck, G. (2007). Excitatory local circuits and their implications for olfactory processing in the Fly antennal lobe. Cell, 128, 601–612.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shlizerman, E., Riffell, J. A., & Kutz, J. N. (2014). Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe. Frontiers in Computational Neuroscience, 8, 70.

    PubMed  PubMed Central  Google Scholar 

  • Silbering, A. F., & Galizia, C. G. (2007). Processing of odor mixtures in the drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. The Journal of Neuroscience, 27, 11966–11977.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stocker, R. F., Lienhard, M. C., Borst, A., & Fischbach, K. F. (1990). Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell and Tissue Research, 262, 9–34.

    CAS  PubMed  Google Scholar 

  • Sun, H., Ma, C. L., Kelly, J. B., & Wu, S. H. (2006). GABAB receptor-mediated presynaptic inhibition of glutamatergic transmission in the inferior colliculus. Neuroscience Letters, 399, 151–156.

    CAS  PubMed  Google Scholar 

  • Varela, J. A., Sen, K., Gibson, J., Fost, J., Abbott, L. F., & Nelson, S. B. (1997). A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. The Journal of Neuroscience, 17, 7926–7940.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X.-J. (1999). Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons. Neuroscience, 89, 347–362.

    CAS  PubMed  Google Scholar 

  • Wang, J. W. (2012). Presynaptic modulation of early olfactory processing in drosophila. Developmental Neurobiology, 72, 87–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, R. I. (2013). Early olfactory processing in drosophila: Mechanisms and principles. Annual Review of Neuroscience, 36, 217–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, L. G., & Saggau, P. (1994). Presynaptic calcium is increased during normal synaptic transmission and paired-pulse facilitation, but not in long-term potentiation in area CA1 of hippocampus. The Journal of Neuroscience, 14, 645–654.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, L.-G., & Saggau, P. (1997). Presynaptic inhibition of elicited neurotransmitter release. Trends in Neurosciences, 20, 204–212.

    CAS  PubMed  Google Scholar 

  • Yu, Y., Migliore, M., Hines, M. L., & Shepherd, G. M. (2014). Sparse coding and lateral inhibition arising from balanced and unbalanced dendrodendritic excitation and inhibition. The Journal of Neuroscience, 34, 13701–13713.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Technology grants 101-2311-B-007-008-MY3, 107-2218-E007-033, and by the Higher Education Sprout Project funded by the Ministry of Science and Technology and Ministry of Education in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Chuan Lo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Albert Compte

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig S1

The network dynamic is robust against the change of the dependence of the synaptic weights on presynaptic calcium concentration. We performed the model simulations with different dependences by changing the values of the power in Eq. 7 from 3.5 to 3.0 and 4.0. The simulations were all performed using the same seed number of the random number generator. This guaranteed that we compared the results based on the exact same realization and no noise or trial-to-trial variability was involved. (A) The firing rate profiles of the neurons in one glomerulus in response to the odor stimulus. (B) The firing rate profiles of PNs in every glomeruli in response to the odor stimuli with different pulse frequencies. (PNG 54 kb)

Fig S2

Schematics illustrating how to quantify similar odor discrimination. (A) The responses of PLNs to an odor A can be represented by a point on the multi-dimensional plot. First, we obtain ten points from ten trials of odor A and another ten points of similar but different odors. Now we can set a discrimination criterion by drawing a circle centered on an arbitrary point of odor A. Points that fall in the circle are classified as odor A and other points are not odor A. We can vary the radius of the circle and obtain different classification results. (B) For each criterion, we can calculate the true positive, true negative, false positive and false negative numbers, and construct a confusion matrix associated with this criterion. (PNG 10262 kb)

Fig S3

Schematics showing how STD reduces the amounts of neurotransmitters. The presynaptic calcium concentration [Ca2+] and STD variable D follow a similar dynamics. Both variables reduce during the stimulus while recover after the stimulus offset. (A) When the stimulus frequency is high, the level of [Ca2+] or D decays rapidly due to insufficient inter-stimulus intervals for recover. (B) When the stimulus frequency is low, longer inter-stimulus intervals lead to better recovery of [Ca2+] or D, and hence a slower decay. Therefore, by monitoring the decay rate of these variables, one can estimate the frequency of stimulus input. Furthermore, since the PN responses to the odor stimuli depend on the ORN-PN synaptic weights, which is the product of [Ca2+]3.5 and D (Eq. 7), the PN responses to repetitive odor pulses also follow a similar behavior with a decay rate dependent on the frequency of the odor pulses. (PNG 150 kb)

Fig S4

Schematics illustrating the effect of spontaneous local neurons (SLNs) on the presynaptic vesicle availability. (A) Some ORNs exhibit strong spontaneous activity. If the ORN-PN synapse is not targeted by SLNs, the vesicles in the presynaptic terminal are quickly depleted and the synapse is depressed. (B) If the ORN-PN synapse is targeted by SLNs, the presynaptic inhibition exhibited by SLNs reduces the level of presynaptic calcium, which in turn reduces the ability of vesicle release despite of the spontaneous activity in ORN. As a result, the synapse maintains abundant vesicles and is able to response to odor stimuli once SLNs is shut down. (PNG 15499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, KW., Lo, CC. Short term depression, presynaptic inhibition and local neuron diversity play key functional roles in the insect antennal lobe. J Comput Neurosci 48, 213–227 (2020). https://doi.org/10.1007/s10827-020-00747-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-020-00747-4

Keywords

Navigation