Skip to main content
Log in

High voltage-controlled magnetic anisotropy and interface magnetoelectric effect in sputtered multilayers annealed at high temperatures

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Voltage control of magnetism promises great energy efficiency in writing magnetic memory. Here, using Cr/Mo/CoFeB/MgO multilayers stable under high annealing temperatures up to 590°C, we significantly enhance the interfacial crystallinity, thereby the interface-originated perpendicular magnetic anisotropy (PMA), voltage-controlled magnetic anisotropy (VCMA), and interface magnetoelectric (ME) effect. High interfacial PMA of 1.35 mJ/m2, VCMA coefficient of −138 fJ/(V m), and interface ME coefficient, which is 2–3 orders of magnitude larger than ab initio calculation results are simultaneously achieved after annealing at 500°C. These promising results enabled by the industry-applicable sputtering process will pave the way for high-density voltage-controlled spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nat. Mater. 9, 721 (2010).

    Article  ADS  Google Scholar 

  2. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).

    Article  ADS  Google Scholar 

  3. P. Khalili Amiri, Z. M. Zeng, P. Upadhyaya, G. Rowlands, H. Zhao, I. N. Krivorotov, J. P. Wang, H. W. Jiang, J. A. Katine, J. Langer, K. Galatsis, and K. L. Wang, IEEE Electron Device Lett. 32, 57 (2011).

    Article  ADS  Google Scholar 

  4. X. Li, A. Lee, S. A. Razavi, H. Wu, and K. L. Wang, MRS Bull. 43, 970 (2018).

    Article  Google Scholar 

  5. K. L. Wang, and P. K. Amiri, SPIN 02, 1250009 (2012).

    Article  Google Scholar 

  6. W. G. Wang, M. Li, S. Hageman, and C. L. Chien, Nat. Mater. 11, 64 (2012).

    Article  ADS  Google Scholar 

  7. T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Nat. Nanotech. 4, 158 (2009).

    Article  ADS  Google Scholar 

  8. P. K. Amiri, J. G. Alzate, X. Q. Cai, F. Ebrahimi, Q. Hu, K. Wong, C. Grezes, H. Lee, G. Yu, X. Li, M. Akyol, Q. Shao, J. A. Katine, J. Langer, B. Ocker, and K. L. Wang, IEEE Trans. Magn. 51, 3401507 (2015).

    Google Scholar 

  9. L. Wang, W. Kang, F. Ebrahimi, X. Li, Y. Huang, C. Zhao, K. L. Wang, and W. Zhao, IEEE Electron Device Lett. 39, 440 (2018).

    Article  ADS  Google Scholar 

  10. T. Nozaki, A. Kozioł-Rachwał, W. Skowroński, V. Zayets, Y. Shiota, S. Tamaru, H. Kubota, A. Fukushima, S. Yuasa, and Y. Suzuki, Phys. Rev. Appl. 5, 044006 (2016).

    Article  ADS  Google Scholar 

  11. A. Kozioł-Rachwał, T. Nozaki, K. Freindl, J. Korecki, S. Yuasa, and Y. Suzuki, Sci. Rep. 7, 5993 (2017).

    Article  ADS  Google Scholar 

  12. W. G. Wang, C. Ni, G. X. Miao, C. Weiland, L. R. Shah, X. Fan, P. Parson, J. Jordan-Sweet, X. M. Kou, Y. P. Zhang, R. Stearrett, E. R. Nowak, R. Opila, J. S. Moodera, and J. Q. Xiao, Phys. Rev. B 81, 144406 (2010).

    Article  ADS  Google Scholar 

  13. S. Yuasa, and D. D. Djayaprawira, J. Phys. D-Appl. Phys. 40, R337 (2007).

    Article  ADS  Google Scholar 

  14. K. Yamane, Y. Higo, H. Uchida, Y. Nanba, S. Sasaki, H. Ohmori, K. Bessho, and M. Hosomi, IEEE Trans. Magn. 49, 4335 (2013).

    Article  ADS  Google Scholar 

  15. W. G. Wang, S. Hageman, M. Li, S. Huang, X. Kou, X. Fan, J. Q. Xiao, and C. L. Chien, Appl. Phys. Lett. 99, 102502 (2011).

    Article  ADS  Google Scholar 

  16. M. Gottwald, J. J. Kan, K. Lee, X. Zhu, C. Park, and S. H. Kang, Appl. Phys. Lett. 106, 032413 (2015).

    Article  ADS  Google Scholar 

  17. T. Liu, Y. Zhang, J. W. Cai, and H. Y. Pan, Sci. Rep. 4, 5895 (2015).

    Article  Google Scholar 

  18. X. Li, G. Yu, H. Wu, P. V. Ong, K. Wong, Q. Hu, F. Ebrahimi, P. Upadhyaya, M. Akyol, N. Kioussis, X. Han, P. Khalili Amiri, and K. L. Wang, Appl. Phys. Lett. 107, 142403 (2015).

    Article  ADS  Google Scholar 

  19. F. de Boer, R. Boom, W. Mattens, A. Miedema, and A. Niessen, Cohesion in Metals: Transition Metal Alloys (North-Holland Publishing Co., Amsterdam, 1988), p. 758.

    Google Scholar 

  20. H. Almasi, M. Xu, Y. Xu, T. Newhouse-Illige, and W. G. Wang, Appl. Phys. Lett. 109, 032401 (2016).

    Article  ADS  Google Scholar 

  21. L. Tang, and G. Thomas, J. Appl. Phys. 74, 5025 (1993).

    Article  ADS  Google Scholar 

  22. K. Tsunekawa, Y. S. Choi, Y. Nagamine, D. D. Djayaprawira, T. Takeuchi, and Y. Kitamoto, Jpn. J. Appl. Phys. 45, L1152 (2006).

    Article  Google Scholar 

  23. P. V. Ong, N. Kioussis, D. Odkhuu, P. Khalili Amiri, K. L. Wang, and G. P. Carman, Phys. Rev. B 92, 020407 (2015).

    Article  ADS  Google Scholar 

  24. X. Li, K. Fitzell, D. Wu, C. T. Karaba, A. Buditama, G. Yu, K. L. Wong, N. Altieri, C. Grezes, N. Kioussis, S. Tolbert, Z. Zhang, J. P. Chang, P. Khalili Amiri, and K. L. Wang, Appl. Phys. Lett. 110, 052401 (2017).

    Article  ADS  Google Scholar 

  25. C. G. Duan, J. P. Velev, R. F. Sabirianov, Z. Zhu, J. Chu, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 101, 137201 (2008).

    Article  ADS  Google Scholar 

  26. M. K. Niranjan, C. G. Duan, S. S. Jaswal, and E. Y. Tsymbal, Appl. Phys. Lett. 96, 222504 (2010).

    Article  ADS  Google Scholar 

  27. M. Tsujikawa, and T. Oda, Phys. Rev. Lett. 102, 247203 (2009).

    Article  ADS  Google Scholar 

  28. D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, Nature 455, 515 (2008).

    Article  ADS  Google Scholar 

  29. D. Chiba, M. Kawaguchi, S. Fukami, N. Ishiwata, K. Shimamura, K. Kobayashi, and T. Ono, Nat. Commun. 3, 888 (2012).

    Article  ADS  Google Scholar 

  30. D. Chiba, S. Fukami, K. Shimamura, N. Ishiwata, K. Kobayashi, and T. Ono, Nat. Mater. 10, 853 (2011).

    Article  ADS  Google Scholar 

  31. J. G. Alzate, P. Khalili Amiri, G. Yu, P. Upadhyaya, J. A. Katine, J. Langer, B. Ocker, I. N. Krivorotov, and K. L. Wang, Appl. Phys. Lett. 104, 112410 (2014).

    Article  ADS  Google Scholar 

  32. H. M. Benia, P. Myrach, A. Gonchar, T. Risse, N. Nilius, and H. J. Freund, Phys. Rev. B 81, 241415 (2010).

    Article  ADS  Google Scholar 

  33. S. Amara-Dababi, R. C. Sousa, M. Chshiev, H. Béa, J. Alvarez-Hérault, L. Lombard, I. L. Prejbeanu, K. Mackay, and B. Dieny, Appl. Phys. Lett. 99, 083501 (2011).

    Article  ADS  Google Scholar 

  34. S. Benedetti, P. Torelli, S. Valeri, H. M. Benia, N. Nilius, and G. Renaud, Phys. Rev. B 78, 195411 (2008).

    Article  ADS  Google Scholar 

  35. F. Ibrahim, H. X. Yang, A. Hallal, B. Dieny, and M. Chshiev, Phys. Rev. B 93, 014429 (2016).

    Article  ADS  Google Scholar 

  36. K. H. He, J. S. Chen, and Y. P. Feng, Appl. Phys. Lett. 99, 072503 (2011).

    Article  ADS  Google Scholar 

  37. T. Nozaki, T. Yamamoto, S. Tamaru, H. Kubota, A. Fukushima, Y. Suzuki, and S. Yuasa, APL Mater. 6, 026101 (2018).

    Article  ADS  Google Scholar 

  38. J. Schoiswohl, W. Zheng, S. Surnev, M. G. Ramsey, G. Granozzi, S. Agnoli, and F. P. Netzer, Surf. Sci. 600, 1099 (2006).

    Article  ADS  Google Scholar 

  39. M. Wang, W. Cai, K. Cao, J. Zhou, J. Wrona, S. Peng, H. Yang, J. Wei, W. Kang, Y. Zhang, J. Langer, B. Ocker, A. Fert, and W. Zhao, Nat. Commun. 9, 671 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Li or KangLong Wang.

Additional information

This work was supported by the NSF Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS), and a Phase II NSF Small Business Innovation Research award. We would like to acknowledge the collaboration of this research with the King Abdul-Aziz City for Science and Technology (KACST) via the Center of Excellence for Green Nanotechnologies (CEGN). This work was partially supported by the Energy Frontier Research Center for Spins and Heat in Nanoscale Electronic Systems (SHINES). LeZhi Wang would like to thank the support of China Scholarship Council (CSC). The authors would also like to acknowledge ChunGang Duan and WeiGang Wang for fruitful discussions.

Supplementary Materials for

11433_2019_1524_MOESM1_ESM.pdf

High Voltage-Controlled Magnetic Anisotropy and Interface Magnetoelectric Effect in Sputtered Multilayers Annealed at High Temperatures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, X., Sasaki, T. et al. High voltage-controlled magnetic anisotropy and interface magnetoelectric effect in sputtered multilayers annealed at high temperatures. Sci. China Phys. Mech. Astron. 63, 277512 (2020). https://doi.org/10.1007/s11433-019-1524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1524-y

Keywords

PACS number(s)

Navigation