Skip to main content
Log in

Intra-Lake Arcellinida (Testate Lobose Amoebae) Response to Winter De-icing Contamination in an Eastern Canada Road-Side “Salt Belt” Lake

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Salt contamination of lakes, due to the application of winter de-icing salts on roads, presents a significant environmental challenge in the “salt belt” region of eastern North America. The research reported here presents the first deployment of a previously published proxy tool based on Arcellinida (testate lobose amoebae) for monitoring road salt contamination. The research was conducted at Silver Lake in Eastern Ontario, a 4-km-long lake with the heavily traveled Trans-Canada Highway (HWY 7) transiting the entire southern shore. The lake showed elevated conductivity (297–310 μS/cm) and sub-brackish conditions (0.14–0.15 ppt). Sodium levels were also elevated near the roadside (median Na = 1020 ppm). Cluster analysis and nonmetric multidimensional scaling results revealed four distinct Arcellinida assemblages: “Stressed Cool Water Assemblage (SCWA),” “Deep Cold Water Assemblage (DCWA),” both from below the 8-m thermocline, and the shallower water “Shallow Water Assemblage 1 (SWA-1)” and “Shallow Water Assemblage 2 (SWA-2)”. Redundancy analysis showed a minor response of Arcellinida to road salt contamination in shallower areas of the lake, with confounding variables significantly impacting assemblage distribution, particularly beneath the thermocline (e.g., water temperature, water depth, sediment runoff from catchment [Ti], sediment geochemistry [Ca, S]). The results of this study indicate that the trophic structure of the lake has to date only been modestly impacted by the cumulative nature of road salt contamination. Nonetheless, the Silver Lake results should be considered of concern and warrant continued arcellinidan biomonitoring to gauge the ongoing and long-term effects of road salt on its ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hanbali RM, Kuemmel DA (1992) Traffic collision analysis of ice control - 47 - operation. http://www.trc.marquette.edu/publications/IceControl/ice-control-1992.pdf Accessed 30 Oct 2018

  2. Roe HM, Patterson RT (2014) Arcellacea (testate amoebae) as bio-indicators of road salt contamination in lakes. Microb Ecol 68(2):299–313

    PubMed  CAS  Google Scholar 

  3. Dugan HA, Bartlett SL, Burke SM, Doubek JP, Krivak-Tetley FE, Skaff NK, Summers JC, Farrell KJ, McCullough IM, Morales-Williams AM, Roberts DC, Ouyang Z, Scordo F, Hanson PC, Weathers KC (2017a) Salting our freshwater lakes. PNAS 114(17):4453–4458

    PubMed  CAS  Google Scholar 

  4. Williams D, Williams N, Cao Y (2000) Road salt contamination of grounDCWAter in a major metropolitan area and development of a biological index to monitor its impact. Water Res 34(1):127–138. https://doi.org/10.1016/S0043-1354(99)00129-3

    Article  CAS  Google Scholar 

  5. Rosenberry D, Bukaveckas P, Buso D, Likens G, Shapiro A, Winter T (1999) Movement of road salt to a small New Hampshire lake. Water Air Soil Pollut 109(1–4):179–206. https://doi.org/10.1023/A:1005041632056

    Article  CAS  Google Scholar 

  6. Findlay S, Kelly V (2011) Emerging indirect and long-term road salt effects on ecosystems. Ann N Y Acad Sci 1223(1):58–68. https://doi.org/10.1111/j.17496632.2010.05942.x

  7. Collins ES, McCarthy FM, Medioli FS, Scott DB, Honig CA (1990) Biogeographic distribution of modern thecamoebians in a transect along the eastern north American coast. In: Hemleben C, Kaminski MA, Kuhnt W, Scott DB (ed), Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera. NATO Advanced Study Institute Series, Series C, Mathematical and Physical Sciences 327:783–791

  8. Dalby AP, Kumar A, Moore JM, Patterson RT (2000) Utility of arcellaceans (thecamoebians) as paleolimnological indicators in tropical settings: Lake Sentani, Irian Jaya, Indonesia. J Foraminifer Res 30:135–142

    Google Scholar 

  9. Charman DJ, Hendon D, Woodland W (2000) The identification of peatland testate amoebae. Quaternary research association technical guide no. 9, London, 147pp

  10. Patterson RT, Huckerby G, Kelly TJ, Swindles GT, Nasser NA (2015) Hydroecology of Amazonian lacustrine Arcellinida (testate amoebae): a case study from Lake Quistococha, Peru. Eur J Protistol 51:460–469. https://doi.org/10.1016/j.ejop.2015.06.009

    Article  PubMed  Google Scholar 

  11. Loeblich Jr AR, Tappan H (1964) Sarcodina, chiefly ‘Thecamoebians’ and Foraminiferida. In: Moore RC (ed) Treatise of invertebrate paleontology, part C, protista 2. Geol Soc America Univ Kansas Press, Lawrence, pp 1–900

    Google Scholar 

  12. Patterson RT, Kumar A (2002) A review of current testate rhizopod (thecamoebian) research in Canada. Palaeogeogr Palaeoclimatol Palaeoecol 180:225–251

    Google Scholar 

  13. Patterson RT, MacKinnon KD, Scott DB, Medioli FS (1985) Arcellaceans (“Thecamoebians”) in small lakes of New Brunswick and Nova Scotia: modern distribution and Holocene stratigraphic changes. J Foraminifer Res 15(2):114–137

    Google Scholar 

  14. Scott DB, Medioli FS (1983) Testate rhizopods in Lake Erie: modern distribution and stratigraphic implications. J Paleontol 57:809–820

    Google Scholar 

  15. Mitchell EAD, Charman DJ, Warner BG (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers Conserv 17:2115–2137

    Google Scholar 

  16. Patterson RT, Kumar A (2000) Use of Arcellacea to gauge levels of pollution and remediation of industrially polluted lakes. In: Martin RE (ed) Environmental micropaleontology. Topics in geobiology, vol 15. Kluwer Academic/Plenum Publication, New York, pp 257–278

    Google Scholar 

  17. Nguyen-Viet H, Bernard N, Mitchell EAD, Cortet J, Badot P-M, Gilbert D (2007) Relationships between testate amoeba (protist) communities and atmospheric heavy metals accumulated in Barbula indica (Bryophyta) in Vietnam. Microb Ecol 53:53–65

    PubMed  CAS  Google Scholar 

  18. Patterson RT, Lamoureux EDR, Neville LA, Macumber AL (2013) Arcellacea (testate Lobose amoebae) as pH indicators in a pyrite mine-acidified lake, northeastern Ontario, Canada. Microb Ecol 65:541–554

    PubMed  CAS  Google Scholar 

  19. Charman D, Roe WR, Gehrels WR (1998) The use of testate amoebae in studies of sea-level change: a case study from the Taf Estuary, South Wales, UK. The Holocene 8:209–218

    Google Scholar 

  20. Qin Y, Fournier B, Lara E, Gu Y, Wang H, Cui Y, Zhang X, Mitchell E (2013) Relationships between testate amoeba communities and water quality in Lake Donghu, a large alkaline lake in Wuhan, China. Front Earth Sci 7(2):182–190. https://doi.org/10.1007/s11707-013-0352-4

    Article  CAS  Google Scholar 

  21. Escobar J, Brenner M, Whitmore T, Kenney W, Curtis J (2008) Ecology of testate amoebae (thecamoebians) in subtropical Florida lakes. J Paleolimnol 40(2):715–731

    Google Scholar 

  22. Patterson RT, Dalby A, Kumar A, Henderson L (2002) Arcellaceans (thecamoebians) as indicators of land use change: settlement history of the Swan Lake Area, Ontario as a case study. J Paleolimnol 28:297–316

    Google Scholar 

  23. Boudreau REA, Galloway JM, Patterson RT, Kumar A, Michel FA (2005) A paleolimnological record of Holocene climate and environmental change in the Temagami region, northeastern Ontario. J Paleolimnol 33:445–461

    Google Scholar 

  24. Roe HM, Patterson RT, Swindles GT (2010) Controls on the contemporary distribution of lake thecamoebians (testate amoebae) within the Greater Toronto area and their potential as water quality indicators. J Paleolimnol 43:955–975

    Google Scholar 

  25. Neville LA, McCarthy FMG, MacKinnon MD, Swindles GT, Marlowe P (2011) Thecamoebians (testate amoebae) as proxies of ecosystem health and reclamation success in constructed wetlands in the oil sands of Alberta, Canada. J Foraminifer Res 41:230–247

    Google Scholar 

  26. Patterson RT, Roe HM, Swindles GT (2012) Development of an Arcellacea (testate lobose amoebae) based transfer function for sedimentary phosphorus in lakes. Palaeogeogr Palaeoclimatol Palaeoecol 348–349:32–44

    Google Scholar 

  27. Honig C, Scott DB (1987) Postglacial stratigraphy and sea-level change in southwestern New Brunswick. Can J Earth Sci 24:354–364

    Google Scholar 

  28. McCarthy FM, Collins ES, McAndrews JH, Kerr HA, Scott DB, Medioli FS (1995) A comparison of postglacial arcellacean (“thecamoebian”) and pollen succession in Atlantic Canada, illustrating the potential of arcellaceans for paleoclimatic reconstruction. J Paleontol 69(5):980–993

    Google Scholar 

  29. Neville LA, Christie DG, McCarthy FMG, MacKinnon MD (2010) Biogeographic variation in Thecamoebian (Testate amoeba) assemblages in lakes within various vegetation zones of Alberta, Canada. Int J Biodivers Conserv 2(8):215–224

    Google Scholar 

  30. Environment Canada (2018) Historical climate data. Published on http://climate.weather.gc.ca/historical_data/search_historic_data_e.html

  31. Suenaga EK (2018) Assessing the chemical and biological recovery of Killarney Provincial Park Lakes from historical acidification. Unpublished Master’s Thesis, Department of Biology, Queen’s University

  32. Dugan HA, Summers JC, Skaff NK, Krivak-Tetley FE, Doubek JP, Burke SM, Bartlett SL, Arvola L, Jarjanazi H, Korponai J, Kleeberg A, Monet G, Monteith D, Moore K, Rogora M, Hanson PC, Weathers KC (2017b) Long-term chloride concentrations in north American and European freshwater lakes. Sci Data 4:170101

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Canadian Council of Ministers of the Environment (2011) Canadian water quality guidelines for the protection of aquatic life: chloride. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment Winnipeg.C

  34. Boës X, Rydberg J, Martinez-Cortizas A, Bindler R, Renberg I (2011) Evaluation of conservative lithogenic elements (Ti, Zr, Al, and Rb) to study anthropogenic element enrichments in lake sediments. J Paleolimnol 46:75–87

    Google Scholar 

  35. LoDico JM, Flower BP, Quinn TM (2006) Subcentennial-scale climatic and hydrologic variability in the Gulf of Mexico during the early Holocene. Paleoceanograph 21:PA3015

    Google Scholar 

  36. Roe HM, Patterson RT (2006) Distribution of Thecamoebians (testate amoebae) in Small Lakes and Ponds, Barbados, West Indies. J Foraminifer Res 36(2):116–134. https://doi.org/10.2113/36.2.116

    Article  Google Scholar 

  37. Steele R, Nasser NA, Patterson RT, Gregory BRB, Roe HM, Reinhardt EG (2018) An assessment of sub-meter scale spatial variability of arcellinida (testate lobose amoebae) assemblages in a temperate lake: implications for limnological studies. Microb Ecol 76(3):680–694. https://doi.org/10.1007/s00248-018-1157-5

    Article  PubMed  CAS  Google Scholar 

  38. Kumar A, Patterson RT (2000) Arcellaceans (thecamoebians): new tools for monitoring long-term and short-term changes in lake bottom acidity. Environ Geol 39:689–697

    CAS  Google Scholar 

  39. Mississippi Valley Conservation Authority (2005) State of the Lake Environment Report, December 2005, Silver Lake. Published on mvc.on.ca/silver-lake/ Retrieved July 2nd, 2018

  40. Mississippi Valley Conservation Authority (2010) State of the Lake Environment Report, December 2010, Silver Lake. Published on mvc.on.ca/silver-lake/ Retrieved July 2nd, 2018

  41. Ontario Ministry of Environment, Conservation, and Parks (2012) Broadscale Monitoring Program data

  42. van Hengstum PJ, Reinhardt EG, Medioli FS, Gröcke DR (2007) Exceptionally preserved late Albian (Cretaceous) Arcellaceans (Thecamoebians) from the Dakota formation near Lincoln, Nebraska, USA. J Foraminifer Res 37:300–3008

    Google Scholar 

  43. Donato E (2009) Particle-size distribution of inferred tsunami deposits in Sur lagoon, Sultanate of Oman. Mar Geol 25:54–64

    Google Scholar 

  44. Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landf 26:1237–1248

    Google Scholar 

  45. Nasser NA, Patterson RT, Roe HM, Galloway JM, Falck H, Palmer MJ, Spence C, Sanei H, Macumber AL, Neville L (2016) Lacustrine Arcellinida (Testate amoebae) as bioindicators of arsenic contamination. Microb Ecol 72(1):130–149. https://doi.org/10.1007/s00248-016-0752-6

    Article  PubMed  CAS  Google Scholar 

  46. Santoro A, Held A, Linsinger TPJ, Perez A, Ricci M (2017) Comparison of total and aqua regia extractability of heavy metals in sewage sludge: the case study of a certified reference material. Trends Anal Chem 89:34–40

    CAS  Google Scholar 

  47. Heiri O, Lotter AF, Lemcke H (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Google Scholar 

  48. Scott DB, Hermelin JOR (1993) A device for precision splitting of micropaleontological samples in liquid suspension. J Paleontol 67:151–154 83

    Google Scholar 

  49. Patterson RT, Fishbein E (1989) Re-examination of the statistical methods used to determine the number of point counts needed for micropaleontological quantitative research. J Paleontol 63:245–248

    Google Scholar 

  50. Fishbein E, Patterson RT (1993) Error-weighted maximum likelihood (EWML): a new statistically based method to cluster quantitative micropaleontological data. J Paleontol 67:475–485

    Google Scholar 

  51. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656

    Google Scholar 

  52. Medioli FS, Scott DB, Collins ES, McCarthy FMG (1990) Fossil thecamoebians: present status and prospects for the future. In: Hemleben C, Kaminski MA, Kuhnt W, Scott DB (ed) Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera. NATOAdvanced Study Institute Series, Series C, Math Phys Sci 327:813–884

  53. Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton 185 pp

    Google Scholar 

  54. Patterson RT, Kumar A (2000b) Assessment of arcellacea (thecamoebian) assemblages, species and strains as contaminant indicators in variably contaminated James Lake, north eastern Ontario. J Foraminifer Res 30:310–320

    Google Scholar 

  55. Reimann C, Filzmoser P, Garrett RG, Dutter R (2008) Statistical data analysis explained: applied environmental statistics with R. John Wiley & Sons, Ltd ISBN: 978-0-470-98581-6

  56. Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990) Diatoms and pH reconstructions. Philos Trans R Soc B 327:263–278

    Google Scholar 

  57. Naimi B, Na H, Groen TA, Skidmore AK, Toxopeus AG (2014) Where is positional uncertainty a problem for species distribution modelling. Ecography 37:191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x

    Article  Google Scholar 

  58. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07-0, URL http://www.R-project.org/

  59. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Google Scholar 

  60. Kim-Anh Le Cao, Florian Rohart, Ignacio Gonzalez, Sebastien Dejean with key contributors Benoit Gautier, Francois Bartolo, contributions from Pierre Monget, Jeff Coquery, FangZou Yao and Benoit Liquet. (2016). mixOmics: Omics Data Integration Project. R package version 6.1.1. https://CRAN.R-project.org/package=mixOmics

  61. Hill MO (1979) Decorana—a fortran program for detrended correspondence analysis and reciprocal averaging. Ecology and systematics. Cornell University, Ithaca, New York, 14850, 52 pp

  62. van denWollenberg AL (1977) Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika 42:207–219

    Google Scholar 

  63. Wagner RJ, Boulger Jr RW, Oblinger CJ, Smith BA (2006) Guidelines and standard procedures for continuous water-quality monitors: station operation, record computation, and data reporting

  64. Lewis EL (1980) The practical salinity scale 1978 and its antecedents. IEEE J Ocean Eng 5(1):3–8

    Google Scholar 

  65. Lewis EL, Perkin RG (1978) Salinity: its definition and calculation. J Geophys Res 83:466–478

    CAS  Google Scholar 

  66. Nürnberg GK (1996) Trophic state of clear and colored, soft- and harDCWAter lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reserv Manage 12:432–447

    Google Scholar 

  67. Nürnberg G, Shaw M (1998) Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia 382:97–112

    Google Scholar 

  68. Henny C, Nomosatryo S (2016) Changes in water quality and trophic status associated with cage aquaculture in Lake Maninjau, Indonesia. IOP Conf Ser Earth Environ Sci 31:012027

    Google Scholar 

  69. Schönborn W (1984) Studies on remains of Testacea in cores of the great Woryty Lake (NE-Poland). Limnologica 16:185–190

    Google Scholar 

  70. Patterson RT, Swindles GT (2015) Influence of ocean–atmospheric oscillations on lake ice phenology in eastern North America. Clim Dyn 45(10):2293–2308. https://doi.org/10.1007/s00382-014-2415-y

    Article  Google Scholar 

  71. Cole GA, Weihe PE (2016) Textbook of limnology. Press, Waveland, 440 p

    Google Scholar 

  72. Anderson OR (2012) The fate of organic sources of carbon in Moss-rich tundra soil microbial communities: a laboratory experimental study. J Eukaryot Microbiol 59:564–570

    PubMed  CAS  Google Scholar 

  73. Patterson RT, Nasser NA, Gregory BRB, Gavel MJ, Menard E, Galloway JM, Roe HM (2019) Arcellinida (testate lobose amoebae) as sensitive bioindicators of arsenic contamination in lakes. Chapter 15, p. 71–73. H. Chenchouni et al. (eds.), Exploring the Nexus of Geoecology, Geography, Geoarcheology and Geotourism: Advances and Applications for Sustainable Development in Environmental Sciences and Agroforestry Research, Advances in Science, Technology & Innovation. https://doi.org/10.1007/978-3-030-01683-8_15

  74. Ma L, Wu J, Abuduwaili J, Lio W (2016) Geochemical responses to anthropogenic and natural influences in Ebinur Lake Sediments of Arid Northwest China. PLOS one:1–12

  75. Kaushal SS, Likens GE, Pace ML, Utz RM, Haq S, Gorman J, Grese M (2018) Freshwater salinization syndrome on a continental scale. PNAS 115(4):E574–E583

    PubMed  CAS  Google Scholar 

  76. Scott WS (1976) The effect of road deicing salts on sodium concentration in an urban water-course. Environ Pollut 10:141–153

    CAS  Google Scholar 

  77. Ramakrishna DM, Viraraghavan T (2005) Environmental impact of chemical deicers – a review. Water Air Soil Pollut 166:49–63

    CAS  Google Scholar 

  78. Eimers MC, Croucher K-N, Raney SM, Morris ML (2015) Sodium accumulation in calcareous roadside soils. Urban Ecosyst 18:1213–1225

    Google Scholar 

  79. Reinhardt EG, Dalby A, Kumar A, Patterson RT (1998) Arcellaceans as pollution indicators in mine tailing contaminated lakes near Cobalt, Ontario, Canada. Micropaleontology 44(2):131–148

    Google Scholar 

  80. Hilton J (1985) A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnol Oceanogr 30(6):1131–1143

    Google Scholar 

  81. Blais JM, Kalff J (2005) The influence of lake morphometry on sediment focusing. Limnol Oceanogr 40(3):582–588

    Google Scholar 

  82. Cangemi M, Censi P, Reimer A, D’Alessandro W, Hause-Reitner D, Madonia P, Oliveri Y, Pecoraino G, Reitner J (2016) Carbonate precipitation in the alkaline lake Specchio di venere (Pantelleria Island, Italy) and the possible role of microbial Mats. Appl Goechem 67:168–176

    CAS  Google Scholar 

  83. Pelechaty M, Pukacz A, Apolinarska K, Pelechata A, Siepak M (2013) The significance of Chara vegetation in the precipitation of lacustrine calcium carbonate. Sedimentology 60:1017–1035

    CAS  Google Scholar 

  84. Davidson W, Lishman JP, Hilton J (1985) Formation of pyrite in freshwater sediments: implications for C/S ratios. Geochim Cosmochim Acta 49:1615–1620

    Google Scholar 

  85. Payne R (2010) Testate amoeba response to acid deposition in a Scottish peatland. Aquat Ecol 44(2):373–385. https://doi.org/10.1007/s10452-009-9297-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawaf A. Nasser.

Electronic supplementary material

ESM Table 1

Water column properties measured in the deepest basin of Silver Lake by the Mississippi Valley Conservation Authority (MVCA) as part of this study (XLSX 21 kb)

ESM Table 2

Geochemical (ICP-MS), sedimentological (particle size analysis), organic (loss-on-ignition), lake parameters, and Arcellinida analysis results for 30 Silver Lake sediment-water interface samples (XLSX 30 kb)

ESM Table 3

Secchi disk depth and Chlorophyll a results produced by the MVCA from 1975 to 2015. Secchi Depth is presented in meters. Chlorophyll a (Chl a) is presented in μg/L (XLSX 12 kb)

ESM Table 4

Total dissolved solids (TDS) and chloride concentrations (Cl) of bottom-waters across Silver Lake collected by MVCA in May and July. Total dissolved solids and chloride are presented in milligrams per liter, depth in meters, and latitude/longitude in decimal degrees (XLSX 12 kb)

ESM Fig 1

Cluster analysis performed with Silver Lake and Roe and Patterson [2] samples (PNG 6373 kb)

High Resolution Image (TIF 26984 kb)

ESM Fig 2

Detrended Correspondence Analysis (DCA) plot showing the distribution of the sampled sites (colored symbols) and arcellinidan species (red acronyms) and strains in multidimensional space from Silver Lake and Roe and Patterson [2]. Species noted: AV—Arcella vulgaris, BI—Bullinularia indica, CAA—Centropyxis aculeata “aculteata,” CAD—Centropyxis aculeata “discoides,” CCA—Centropyxis constricta “aerophilia,” CCC—Centropyxis constricta “constricta,” CCS—Centropyxis constricta “spinosa,” CT—Cucurbitella tricuspis, CK—Cyclopyxis kahl, DA—Difflugia acuminata, DBACI—Difflugia bacillarium, DB—Difflugia bidens, DC—Difflugia corona, MC—Mediolus corona, DGG—Difflugia glans “glans,” DGD—Difflugia glans “distenda,” DGM—Difflugia glans “magna,” DOBRY—Difflugia oblonga “bryophilia,” DOL—Difflugia oblonga “lanceleolata,” DOLA—Difflugia oblonga “lanceolate,” DOO—Difflugia oblonga “oblonga,” DOS—Difflugia oblonga “spinosa,” DOT—Difflugia oblonga “tenuis,” DOTE—Difflugia oblonga “tenuis,” DP—Difflugia protaeiformis,; DPA –Difflugia protaeiformis “acuminata,” DPC—Difflugia protaeiformis “claviformis,” DCL—Difflugia claviformis, DUU—Difflugia urceolata “urceolata,” DE—Difflugia elegans, LV—Lagenodifflugia vas, LS—Lesquereusia spiralis, HS—Heleopera sphagni, PC—Pontigulasia compressa (PNG 6373 kb)

High Resolution Image (TIF 26677 kb)

ESM Fig 3

Nonmetric Multidimensional Scaling (NMDS) plot showing the distribution of the sampled sites (colored symbols) and arcellinidan species (red acronyms) and strains in multidimensional space from Silver Lake and Roe and Patterson [2]. Species noted: AV—Arcella vulgaris, BI—Bullinularia indica, CAA—Centropyxis aculeata “aculteata,” CAD—Centropyxis aculeata “discoides,” CCA—Centropyxis constricta “aerophilia,” CCC—Centropyxis constricta “constricta,” CCS—Centropyxis constricta “spinosa,” CT—Cucurbitella tricuspis, CK—Cyclopyxis kahl, DA—Difflugia acuminata, DBACI—Difflugia bacillarium, DB—Difflugia bidens, DC—Difflugia corona, MC—Mediolus corona, DGG—Difflugia glans “glans,” DGD—Difflugia glans “distenda,” DGM—Difflugia glans “magna,” DOBRY—Difflugia oblonga “bryophilia,” DOL—Difflugia oblonga “lanceleolata,” DOLA—Difflugia oblonga “lanceolate,” DOO—Difflugia oblonga “oblonga,” DOS—Difflugia oblonga “spinosa,” DOT—Difflugia oblonga “tenuis,” DOTE—Difflugia oblonga “tenuis,” DP—Difflugia protaeiformis; DPA—Difflugia protaeiformis “acuminata,” DPC—Difflugia protaeiformis “claviformis,” DCL—Difflugia claviformis, DUU—Difflugia urceolata “urceolata,” DE—Difflugia elegans, LV—Lagenodifflugia vas, LS—Lesquereusia spiralis, HS—Heleopera sphagni, PC—Pontigulasia compressa (PNG 6373 kb)

High Resolution Image (TIF 26637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cockburn, C.F., Gregory, B.R.B., Nasser, N.A. et al. Intra-Lake Arcellinida (Testate Lobose Amoebae) Response to Winter De-icing Contamination in an Eastern Canada Road-Side “Salt Belt” Lake. Microb Ecol 80, 366–383 (2020). https://doi.org/10.1007/s00248-020-01513-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01513-w

Keywords

Navigation