Skip to main content
Log in

Gravity casting of aluminum-Al2O3 hollow sphere syntactic foams for improved compressive properties

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Alumina hollow spheres with a diameter range of 1–2 mm were filled in 6061 Al alloy by gravity infiltration casting to synthesize Al-matrix syntactic foams. The effects of infiltration temperature and heat treatment on microstructure, compressive properties, and energy absorption properties of the syntactic foams were studied. The results show that high quality syntactic foams could be synthesized in the infiltration temperature range 770–830 °C and the particles seamlessly bonded with the matrix. The average density and porosity of the syntactic foams were around 1.66 g/cm3 and 37.47%, respectively. The highest energy absorption capacity and specific energy absorption of the as-cast syntactic foams occurred at infiltration temperature 770 °C, reaching 41.11 MJ/m3 and 23.63 kJ/kg, respectively, while these parameters for the heat-treated samples showed the maximum values for the solution-aging treated samples, reaching 48.92 MJ/m3 and 31.36 kJ/kg respectively. Extensive literature survey is presented in this work by extracting the compressive properties of a variety of Al-matrix syntactic foams and comparing them with the results obtained in the present work. It is observed that the syntactic foams synthesized by gravity infiltration method equal or exceed the properties demonstrated by many Al-matrix syntactic foams synthesized by other methods reported in recent years. As a major advantage, the gravity infiltration method can be scaled up to industrial production level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Hangai, H. Matsushita, R. Suzuki, S. Koyama, K. Amagai, R. Nagahiro, T. Utsunomiya, M. Matsubara, N. Yoshikawa, J. Porous Mater. 26(4), 1149–1155 (2019)

    CAS  Google Scholar 

  2. Y. Hangai, K. Takahashi, R. Nagahiro, K. Amagai, T. Utsunomiya, N. Yoshikawa, J. Porous Mater. (2019). https://doi.org/10.1007/s10934-019-00810-1

    Article  Google Scholar 

  3. P.K. Rohatgi, N. Gupta, B.F. Schultz, D.D. Luong, JOM 63(2), 36–42 (2011)

    CAS  Google Scholar 

  4. M. Taherishargh, I.V. Belova, G.E. Murch, T. Fiedler, Mater. Sci. Eng. 635, 102–108 (2015)

    CAS  Google Scholar 

  5. L. Licitra, D.D. Luong, O.M. Strbik, N. Gupta, Mater. Des. 66, 504–515 (2015)

    CAS  Google Scholar 

  6. I.N. Orbulov, Mater. Sci. Eng. 583, 11–19 (2013)

    CAS  Google Scholar 

  7. G. Castro, S.R. Nutt, X. Wenchen, Mater. Sci. Eng. 578, 222–229 (2013)

    CAS  Google Scholar 

  8. G.A. Rivero, B.F. Schultz, J.B. Ferguson, N. Gupta, P.K. Rohatgi, J. Mater. Res. 28(17), 2426–2435 (2013)

    Google Scholar 

  9. J. Cox, D.D. Luong, C.V. Shunmugasamy, N. Gupta, M.O. Strbik, K. Cho, Metals 4(4), 1–83 (2014)

    Google Scholar 

  10. D.P. Mondal, M.D. Goel, N. Bagde, N. Jha, S. Sahu, A.K. Barnwal, Mater. Des. 57, 315–324 (2014)

    CAS  Google Scholar 

  11. S. Sahu, D.P. Mondal, J.U. Cho, M.D. Goel, M.Z. Ansari, Compos. B 160, 394–401 (2019)

    CAS  Google Scholar 

  12. Q. Zhang, Y. Lin, H. Chi, J. Chang, G. Wu, Compos. Struct. 183, 499–509 (2018)

    Google Scholar 

  13. L. Pan, Y. Yang, M.U. Ahsan, D.D. Luong, N. Gupta, A. Kumar, P.K. Rohatgi, Mater. Sci. Eng. A 731, 413–422 (2018)

    CAS  Google Scholar 

  14. G. Anbuchezhiyan, B. Mohan, D. Sathianarayanan, T. Muthuramalingam, J. Alloys Compd. 719, 125–132 (2017)

    CAS  Google Scholar 

  15. D.D. Luong, V.C. Shunmugasamy, N. Gupta, D. Lehmhus, J. Weise, J. Baumeister, Mater. Des. 66, 516–531 (2015)

    CAS  Google Scholar 

  16. Y. Lin, Q. Zhang, F. Zhang, J. Chang, G. Wu, Mater. Sci. Eng. A 696, 236–247 (2017)

    CAS  Google Scholar 

  17. C.A. Vogiatzis, A. Tsouknidas, D.T. Kountouras, S. Skolianos, Mater. Des. 85, 444–454 (2015)

    CAS  Google Scholar 

  18. S. Birla, D.P. Mondal, S. Das, N. Prasanth, A.K. Jha, A.N.C. Venkat, Trans. Indian Inst. Met. 70(7), 1827–1840 (2017)

    CAS  Google Scholar 

  19. D. Newsome, B. Schultz, J. Ferguson, P. Rohatgi, Materials 8(9), 5292 (2015)

    Google Scholar 

  20. K. Al-Sahlani, S. Broxtermann, D. Lell, T. Fiedler, Mater. Sci. Eng. A 728, 80–87 (2018)

    CAS  Google Scholar 

  21. A. Averardi, C. Cola, S.E. Zeltmann, N. Gupta, Mater. Today Commun. 24, 100964 (2020)

    CAS  Google Scholar 

  22. E. Lamanna, N. Gupta, P. Cappa, O.M. Strbik, K. Cho, J. Alloys Compd. 695, 2987–2994 (2017)

    CAS  Google Scholar 

  23. M. Omar, C. Xiang, N. Gupta, O.M. Strbik, K. Cho, Mater. Sci. Eng. 643, 156–168 (2015)

    Google Scholar 

  24. V.M. Sreekumar, R.M. Pillai, C. Pai, M. Chakraborty, J. Mater. Process. Technol. 192, 588–594 (2007)

    Google Scholar 

  25. L. Guobin, S. Jibing, G. Quanmei, W. Yuhui, J. Mater. Process. Technol. 161(3), 445–448 (2005)

    Google Scholar 

  26. S. Beroual, Z. Boumerzoug, P. Paillard, Y. Borjon-Piron, J. Alloys Compd. 784, 1026–1035 (2019)

    CAS  Google Scholar 

  27. K. Tang, Q. Du, Y. Li, Calphad 63, 164–184 (2018)

    CAS  Google Scholar 

  28. H. Yang, S. Ji, W. Yang, Y. Wang, Z. Fan, Mater. Sci. Eng. A 642, 340–350 (2015)

    CAS  Google Scholar 

  29. Y.-L. Ji, F.-A. Guo, Y.-F. Pan, Trans. Nonferrous Met. Soc. China 18(1), 126–131 (2008)

    CAS  Google Scholar 

  30. Y. Wu, J. Xiong, R. Lai, X. Zhang, Z. Guo, J. Alloys Compd. 475(1), 332–338 (2009)

    CAS  Google Scholar 

  31. B. Soni, S. Biswas, J. Porous Mater. 24(1), 29–37 (2017)

    CAS  Google Scholar 

  32. D.K. Balch, J.G. O’Dwyer, G. Davis, C.M. Cady, G. Gray, D. Dunand, Mater. Sci. Eng. 391, 408–417 (2005)

    Google Scholar 

  33. S. Broxtermann, M. Taherishargh, I.V. Belova, G.E. Murch, T. Fiedler, J. Alloys Compd. 691, 690–697 (2017)

    CAS  Google Scholar 

  34. X.F. Tao, L.P. Zhang, Y.Y. Zhao, Mater. Des. 30(7), 2732–2736 (2009)

    CAS  Google Scholar 

  35. G.H. Wu, Z.Y. Dou, D.L. Sun, L.T. Jiang, B.S. Ding, B.F. He, Scr. Mater. 56(3), 221–224 (2007)

    CAS  Google Scholar 

  36. M. Taherishargh, I.V. Belova, G.E. Murch, T. Fiedler, Mater. Sci. Eng. 604, 127–134 (2014)

    CAS  Google Scholar 

  37. B.D. Newsome, F.B. Schultz, B.J. Ferguson, K.P. Rohatgi, Materials 8(9), 1–378 (2015)

    Google Scholar 

  38. A. Daoud, J. Alloys Compd. 486(1), 597–605 (2009)

    CAS  Google Scholar 

  39. D.D. Luong, O.M. Strbik, V.H. Hammond, N. Gupta, K. Cho, J. Alloys Compd. 550, 412–422 (2013)

    CAS  Google Scholar 

  40. A. Daoud, Mater. Sci. Eng. 488(1), 281–295 (2008)

    Google Scholar 

  41. M. Taherishargh, E. Linul, S. Broxtermann, T. Fiedler, J. Alloys Compd. 737, 590–596 (2018)

    CAS  Google Scholar 

  42. B. Katona, A. Szlancsik, T. Tábi, I.N. Orbulov, Mater. Sci. Eng. 739, 140–148 (2019)

    CAS  Google Scholar 

  43. S. Sahu, M.Z. Ansari, D.P. Mondal, C. Cho, Mater. Sci. Technol. 35(7), 856–864 (2019)

    CAS  Google Scholar 

  44. A. Wright, A. Kennedy, Adv. Eng. Mater. 19(11), 1600467 (2017)

    Google Scholar 

  45. B. Zhang, Y. Lin, S. Li, D. Zhai, G. Wu, Compos. B 98, 288–296 (2016)

    CAS  Google Scholar 

  46. M. Taherishargh, M. Vesenjak, I.V. Belova, L. Krstulović-Opara, G.E. Murch, T. Fiedler, Mater. Des. 99, 356–368 (2016)

    CAS  Google Scholar 

  47. J.A. Maria, B.F. Schultz, J.B. Ferguson, N. Gupta, P.K. Rohatgi, J. Mater. Sci. 49(3), 1267–1278 (2014)

    Google Scholar 

  48. S.B. Bonabi, J.K. Khabushan, R. Kahani, A.H. Raouf, Mater. Des. 64, 310–315 (2014)

    Google Scholar 

  49. A. Daoud, Mater. Sci. Eng. 525(1), 7–17 (2009)

    Google Scholar 

  50. J. Liu, S. Yu, X. Zhu, M. Wei, Y. Luo, Y. Liu, J. Alloys Compd. 476(1), 220–225 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Youth Fund of Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials (GXYSYF1806), Guangxi Natural Science Foundation (Grant No. 2016JJA160069), Nanning Scientific Research and Technology Development Program (20171005-1), Guangxi University Research Fund Project (Grant No. XJZ100343), Innovation Drive Development Foundation of Guangxi (Grant No. AA17202011), Innovation and Entrepreneurship Training Program for College Students of Guangxi University (201810593230). Jieming Wen is thanked for providing the electronic universal testing machine for compression test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Rao, D., Yang, Y. et al. Gravity casting of aluminum-Al2O3 hollow sphere syntactic foams for improved compressive properties. J Porous Mater 27, 1127–1137 (2020). https://doi.org/10.1007/s10934-020-00889-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00889-x

Keywords

Navigation