Skip to main content
Log in

Thermodynamic Modeling of the Pb-S and Cu-Pb-S Systems with Focus on Lead Refining Conditions

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Thermodynamic modeling of the Pb-S and Cu-Pb-S systems is presented. All available experimental data in these systems are collected, assessed and used to optimize the model parameters. For the liquid phase, a solution (CuI, PbII, SII) is developed using the modified quasichemical model in pair approximation. Liquid copper, liquid lead metal, as well as matte phases are described using single solution with miscibility gaps. Earlier thermodynamic assessments available in the literature did not include all the data on the solubility of Cu and S in liquid Pb at low temperatures, < 750 °C (1023 K), which is important for lead fire refining. In the present study, these additional data points are used in the optimization. For the composition of lead in equilibrium with matte at temperatures > 900 °C (1123 K), a significant discrepancy among different sets of literature data and existing thermodynamic assessments is revealed. Preliminary experiments are performed with the goal to understand the nature of the problem and to develop the methodology based on high-temperature equilibration, rapid quenching and electron probe x-ray microanalysis. The results of this study help to select accurate literature results in the optimization of model parameters. The resulting database is applicable to calculate slag/matte/metal distribution of lead in copper smelting and converting, as well as for predictions in the lead smelting and fire refining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Y. Dessureault, Thermodynamic Modeling of Lead Smelting in the Blast Furnace, Université de Montréal, Montreal, 1994

    Google Scholar 

  2. S.A. Decterov and A.D. Pelton, Thermodynamic Modeling of Lead Distribution among Matte, Slag and Liquid Copper, Metall. Mater. Trans. B, 1999, 30B(6), p 1033-1044

    Article  ADS  Google Scholar 

  3. H. Johto and P. Taskinen, Phase Stabilities and Thermodynamic Assessment of the System Cu-Pb-S, Miner. Eng., 2013, 42, p 68-75

    Article  Google Scholar 

  4. R.F. Blanks and G.M. Willis, Equilibria Between Lead, Lead Sulfide and Cuprous Sufide and the Decopperizing of Lead with Sulfur, Phys. Chem. Process Metall., 1961, 8, p 991-1028

    Google Scholar 

  5. T.R.A. Davey, Phase Systems Concerned with the Copper Drossing of Lead, Bull. Inst. Min. Metall., 1963, 678, p 553-620

    Google Scholar 

  6. R.J. Moffatt, G.M. Willis, Copper-Lead-Sulfur System at High Temperatures and Its Application to Continuous Copper Drossing, Aust. Inst. Min. Metall. Conference, June 1975, South Australia, p 167-185

  7. R.J. Sinclair, The Extractive Metallurgy of Lead, AusIMM, Carlton, 2009

    Google Scholar 

  8. A.D. Pelton, S.A. Decterov, G. Eriksson, C. Robelin, and Y. Dessureault, The Modified Quasichemical Model. I—Binary Solutions, Metall. Mater. Trans. B, 2000, 31(4), p 651-659

    Article  Google Scholar 

  9. A.D. Pelton and P. Chartrand, The Modified Quasichemical Model. II—Multicomponent Solutions, Metall. Mater. Trans. A, 2001, 32(6), p 1355-1360

    Article  Google Scholar 

  10. T. Hidayat, D. Shishin, S. Decterov, and E. Jak, Critical Assessment and Thermodynamic Modeling of the Cu-Fe-O-Si System, CALPHAD, 2017, 58, p 101-114

    Article  Google Scholar 

  11. E. Jak, P.C. Hayes, and H.-G. Lee, Improved methodologies for the determination of high temperature phase equilibria, Korean J. Miner. Mater. Inst. (Seoul), 1995, 1(1), p 1-8 (in English)

    Google Scholar 

  12. E. Jak, Integrated Experimental and Thermodynamic Modelling Research Methodology for Metallurgical Slags with Examples in the Copper Production field 9th International Conference on Molten Slags, Fluxes and Salts (MOLTEN12), 2012 of Conference (Beijing, China), The Chinese Society for Metals, 2012 Published

  13. A. Fallah-Mehrjardi, T. Hidayat, P.C. Hayes, and E. Jak, Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si System in Controlled Gas Atmospheres: Development of Technique, Metall. Mater. Trans. B, 2017, 48(6), p 3002-3016

    Article  Google Scholar 

  14. D. Shishin, T. Hidayat, U. Sultana, M. Shevchenko, and E. Jak, Experimental Measurement and Thermodynamic Model Predictions of the Distributions of Cu, As, Sb and Sn Between Liquid Lead and PbO-FeO-Fe2O3-SiO2, Submitted to Slag. Int. J. Mater. Res., 2020

  15. D. Shishin, T. Hidayat, U. Sultana, M. Shevchenko, and E. Jak, Experimental Study and Thermodynamic Calculations of the Distribution of Ag, Au, Bi and Zn Between Pb Metal and Pb-Fe-O-Si Slag. J. Sustain. Metall., 2020, 6, p. 68-77

    Article  Google Scholar 

  16. D. Shishin, J. Chen, T. Hidayat, and E. Jak, Thermodynamic Modelling of the Pb-As and Cu-Pb-As Systems Supported by Experimental Study, J. Phase Equilib. Differ., 2019, 40, p 758-767

    Article  Google Scholar 

  17. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.A. Van Ende, FactSage Thermochemical Software and Databases, 2010–2016, CALPHAD, 2016, 54, p 35-53 (in English)

    Article  Google Scholar 

  18. S. Petersen and K. Hack, The Thermochemistry Library ChemApp and Its Applications, Int. J. Mater. Res., 2007, 98(10), p 935-945 (in English)

    Article  Google Scholar 

  19. P. Koukkari, K. Penttila, K. Hack, and S. Petersen, ChemSheet: An Efficient Worksheet Tool for Thermodynamic Process Simulation, EUROMAT 99 Biannu. Meet. Fed. Eur. Mater. Soc. (FEMS), 2000, 3, p 323-330 (in English)

    Google Scholar 

  20. S. Petersen, K. Hack, P. Monheim, and U. Pickartz, SimuSage: The Component Library for Rapid Process Modeling and Its Applications, Int. J. Mater. Res., 2007, 98(10), p 946-953 (in English)

    Article  Google Scholar 

  21. T. Jantzen and P.J. Spencer, Thermodynamic Assessments of the Cu-Pb-Zn and Cu-Sn-Zn Systems, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 1998, 22(3), p 417-434 (in English)

    Article  Google Scholar 

  22. D. Shishin and S.A. Decterov, Critical Assessment and Thermodynamic Modeling of Cu-O and Cu-O-S systeMs, CALPHAD, 2012, 38, p 59-70

    Article  Google Scholar 

  23. P. Waldner, Thermodynamic modeling of the Cu-S system, Ecole Polytechnioque de Montreal, Montreal, QC, Canada, FTmisc in C. W. Bale, et al., FactSage Thermochemical Software and Databases: Recent Developments. CALPHAD, vol. 33, pp. 295–311 (2009)

  24. P. Waldner, Gibbs Energy Modeling of the Cu-S Liquid Phase: Completion of the Thermodynamic Calculation of the Cu-S System, Metall. Mater. Trans. B, 2020, 51(2), p 805-817

    Article  Google Scholar 

  25. A.D. Pelton, A General “Geometric” Thermodynamic Model for Multicomponent Solutions, CALPHAD, 2001, 25(2), p 319-328

    Article  Google Scholar 

  26. F.H. Hayes, H.L. Lukas, G. Effenberg, and G. Petzow, A Thermodynamic Optimization of the Copper-Silver-Lead system, Z. Metallkd., 1986, 77(11), p 749-754 (in English)

    Google Scholar 

  27. J.C. Lin, R.C. Sharma, and Y.A. Chang, The Pb-S (Lead-Sulfur) System, Bull. Alloy Phase Diagr., 1986, 7(4), p 374-381

    Article  Google Scholar 

  28. K. Friedrich and A. Leroux, Lead and Sulphur, Metallurgie, 1905, 2, p 536-539

    Google Scholar 

  29. E. Miller and K.L. Komarek, Retrograde Solubility in Semiconducting Intermetallic Compounds, Trans. Metall. Soc. AIME, 1966, 236(6), p 832-840

    Google Scholar 

  30. G. Kullerud, The Lead Sulfur System, Am. J. Sci., 1969, 267, p 233-256

    Google Scholar 

  31. R.H. Eric and M. Timucin, Phase Equilibria and Thermodynamics in the Lead-Lead Sulphide System, J. S. Afr. Inst. Min. Metall., 1988, 88, p 353-361

    Google Scholar 

  32. K. Itagaki and A. Yazawa, Thermodynamic investigation of the liquid Pb-S system by using a drop calorimeter, Thermochim. Acta, 1985, 88(1), p 261-266 (in English)

    Article  Google Scholar 

  33. J. Bloem and F.A. Kroger, The P-T-X Phase Diagram of the Lead-Sulfur System, Z. Phys. Chem., 1956, 7, p 1-14

    Article  Google Scholar 

  34. A.V. Novoselova, V.P. Zlomanov, S.G. Karbanov, O.V. Matveyev, and A.M. Gas’kov, Physico-Chemical Study of the Germanium, Tin and Lead Chalcogenides, Progr. Solid State Chem., 1972, 7, p 85-91

    Article  Google Scholar 

  35. L.S. Kovalenko, V.A. Snurnikova, and A.V. Vanyukov, Phase Equilibriums in the Lead-Sulfur System, Tsvetn. Met., 1976, 10, p 21-22

    Google Scholar 

  36. N. Fukatsu and Z. Kozuka, Phase Equilibria in the System Pb-SO, Metall. Rev. MMIJ, 1984, 1, p 27-46

    Google Scholar 

  37. T. Rytkonen, M. Pelto, and A. Taskinen, Thermodynamics of Pb-S Solutions, Scand. J. Metall., 1986, 15, p 73-76

    Google Scholar 

  38. R.M. Grant and B. Russell, Thermodynamic Study of Dilute Sulfur and Copper-Sulfur Solutions in Lead (Activity (of Sulfur, in Lead Solns., Copper Effect on)), Met. Trans., 1970, 1, p 75-83 (in English)

    Google Scholar 

  39. L.G. Twidwell, A.H. Larson, Influence of Additive Elements on the Activity Coefficient of Sulfur in Liquid Lead At 600 deg (Antimony Alloys; Bismuth Alloys; Copper Alloys; Gold Alloys; Silver Alloys; Tin Alloys (Lead-, Sulfur Activity Coeff. in); Activity (of Sulfur in Liquid Lead, Addn. Element Effect on); Lead Alloys (Sulfur Activity Coeff. in liquid)). Trans. Metall. Soc. AIME, 236(10), 1414–1420 (1966) (in English)

  40. L.L. Cheng and C.B. Alcock, Thermodynamic Study of Dilute Solutions of Sulfur in Liquid Tin and Lead, Metall. Soc. Am. Inst. Min. Metall. Petrol. Eng. Trans., 1961, 221, p 295-300

    Google Scholar 

  41. T.R. Cho and M.G. Jung, Ternary Misicibility Gap (Phase Diagram) of the Lead-Copper-Sulfur System at 1000 Degree C, Nonmunjip - Ch’ungnam Taehakkyo Kongop Koyuk Yon’guso, 1983, 6, p 52-55

    Google Scholar 

  42. S. Goto, O. Ogawa, and K. Kuriyama, Isothermal Sections of the Ternary Copper-Lead-Sulfur System in the Temperature Range 600–1200 °C, Nippon Kogyo Kaishi, 1983, 99, p 921-924

    Google Scholar 

  43. K. Azuma, S. Goto, and N. Takebe, Thermodynamic Studies of PbS in Copper Mattes, I, Nippon Kogyo Kaishi, 1970, 86, p 35-40

    Google Scholar 

  44. R.H. Eric and M. Timucin, Phase Relations and Thermodynamics in the Copper-Lead-Sulfur System, J. S. Afr. Inst. Min. Metall., 1989, 89(5), p 141-146 (in English)

    Google Scholar 

  45. W. Guertler and G. Landau, Crystallization Diagrams of the System Copper-Lead-Sulfur, Z. Anorg. Allg. Chem., 1934, 218, p 321-345

    Article  Google Scholar 

  46. H. Eric and M. Timucin, Activities in Cu2S-FeS-PbS Melts at 1200 °C, Metall. Trans. B, 1981, 12B(3), p 493-500

    Article  ADS  Google Scholar 

  47. V.N. Nesterov, R.A. Isakova, and A.S. Shendyapin, Activity of Lead in Sulfide Melts, Zh. Fiz. Khim., 1969, 43(12), p 3181-3183

    Google Scholar 

  48. J. Botor, R. Zebik, and J. Konieczny, Thermodynamic Properties of Molten Sulfides; Dicopper Sulfide-Lead Monosulfide, Thermochim. Acta, 1990, 164, p 65-77

    Article  Google Scholar 

  49. N.I. Kopylov, M.Z. Toguzov, V.I. Yarygin, An investigation of the system PbS-Cu1.8S-ZnS. Izvestiya Akademii Nauk SSSR, Metally., 1976, 6, p 80-83

    Google Scholar 

  50. G.C. Kaushal and M.L. Kapoor, Thermodynamics of Dilute Solutions of Sulfur in Binary Lead-Copper Alloy Solvents, Met. Forum, 1982, 5, p 130-136

    Google Scholar 

  51. S.N. Sinha, Distribution of Iron, Lead, Cobalt, Tin, Silver, and Gold Between Copper and Matte, University of Utah, Utah, 1984

    Google Scholar 

  52. T. Michimoto, T. Ohdan, N. Suzuki, K. Ichii, and T. Oishi, Solubilities of Copper and Sulfur in Molten Lead, Resour. Process., 2007, 54, p 139-144

    Article  Google Scholar 

  53. D. Shishin, M. Shevchenko, V. Prostakova, P.C. Hayes, E. Jak, Thermodynamic Modelling of Molten Slag, Matte, Metal and Speiss Phases for the Pyrometallurgy of Lead (Pb) Processing Systems, 11th Molten Slags, Fluxes and Salts [MOLTEN 2020], 2020 of Conference (Seoul, Korea), 2020 Published

  54. D. Shishin, S.A. Decterov, and E. Jak, Thermodynamic Assessment of Slag-Matte-Metal Equilibria in the Cu-Fe-O-S-Si System, J. Phase Equilib. Diff., 2018, 39(5), p 456-475

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Australian Research Council Linkage Program LP140100480, and industry partners, Atlantic Copper, Aurubis, BHP Billiton Olympic Dam Operation, Kazzinc Glencore, PASAR Glencore, Outotec Oy (Espoo), Anglo American Platinum, Umicore, Rio Tinto Kennecott, Peñoles and Boliden for the financial and technical support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Shishin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishin, D., Chen, J. & Jak, E. Thermodynamic Modeling of the Pb-S and Cu-Pb-S Systems with Focus on Lead Refining Conditions. J. Phase Equilib. Diffus. 41, 218–233 (2020). https://doi.org/10.1007/s11669-020-00811-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00811-7

Keywords

Navigation