Skip to main content
Log in

Capacity of C4H8Ti4 cluster for adsorption of CO2 and CO: a computational study

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The adsorption of carbon dioxide and carbon monoxide molecules on the magnetic cluster C4H8Ti4 was studied within the framework of Density Functional Theory. We have showed the adsorption of eight molecules, each of CO2 and CO on a single cluster-C4H8Ti4. We have discussed binding energy, charge transfer mechanism, change in dipole moment, and HOMO-LUMO analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Petrova GN, Efimov ON, Strelets VV (1983) Bull Acad Sci USSRCH + 32:1843–1847

    Article  Google Scholar 

  2. Figueroa JD, Fout T, Plasynski S, MeIlvried H, Srivastava RD (2008) Int J Green House Gas Control 2:9–20

    Article  CAS  Google Scholar 

  3. Anderson TR, Hawkins E, Jones PD (2016) Endeavour 40:178–187

    Article  PubMed  Google Scholar 

  4. Tour JM, Kittrell C, Colvin VL (2010) Nat Mater 9:871–874

    Article  CAS  PubMed  Google Scholar 

  5. Song C (2006) Catal Today 115:2–32

    Article  CAS  Google Scholar 

  6. Vorosmarty C, Schloss A (1993) Nature 363:359378

    Google Scholar 

  7. Cheng D, Negreiros FR, Apra E, Fortunelli A (2013) ChemSusChem 6:944

    Article  CAS  PubMed  Google Scholar 

  8. Adger WN, Barnett J, Brown K, Marshall N, O Brein K (2013) Nat Clim Chang 3:112–117

    Article  Google Scholar 

  9. Doney SC, Fabrey VJ, Feely RA, Kleypas JA (2009) Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  10. World Health Organization (1999) Monitoring ambient air quality for health impact assessment. WHO Regional Publications, European Series. p. 92

  11. Jiang Y, Sun L, Du J, Liu Y, Shi H, Liang Z, Li J (2017) Crystal Growth and Design. 17(4):2090–2096

  12. Yoon YI, Kim YE, Nam SC, Park SY, Chun S, Lee IS, Kim HS (2017) Energy Procedia 114:6240–6245

    Article  CAS  Google Scholar 

  13. Cormos AM, Cormos CC (2017) Chem Eng Res Des 123:230–239

    Article  CAS  Google Scholar 

  14. Bjerge L-M, Brevik P (2014) Energy Procedia 63:6455–6463

    Article  CAS  Google Scholar 

  15. Toda Y, Hirayama H, Kuganathan N, Torrisi A, Sushko PV, Hosono H (2013) Nat Commun 4:2378. https://doi.org/10.1038/ncomms3378

    Article  PubMed  Google Scholar 

  16. Fukuhara C, Hayakawa K, Suzuki Y, Kawasaki W, Watanabe R (2016) Appl Catal A Gen 532:12–18

    Article  Google Scholar 

  17. Nomura K, Ujihira Y, Hayakawa T, Takehira K (1996) Appl Catal A Gen 137:25–36

    Article  CAS  Google Scholar 

  18. Ding J, Bu Y, Ou M, Yu Y, Zhong Q, Fan M (2017) Appl Catal B Environ 202:314–325

    Article  CAS  Google Scholar 

  19. Chen DM, Zhang XJ (2019) J Sol St Chm 278:120906

    Article  CAS  Google Scholar 

  20. Phan HT, Pham-Ho MP, Nguyen MT (2019) Chem Phys Lett 728:186–194

    Article  Google Scholar 

  21. Grice KA (2017) Coord Chem Rev 336:78–95

    Article  CAS  Google Scholar 

  22. Yang Y, Guo Z, Chen XH, Lin J (2019) J Sol St Chm 276:190–193

  23. Suzuki TM, Takayama T, Sato S, Iwase A, Kudo A, Morikawa T (2018) Appl Catal B Environ 224:572–578

    Article  CAS  Google Scholar 

  24. Zhou Si, Yang X, Shen Y, Bruce King R, Zhao J (2019) J Alloys and Comounds 80625:698–704

  25. Zhang QY, Zhao QF, Liang XM, Wang XL, Ma FX, Suo BB, Zou WL, Han HX, Song Q, Wu Q, Li YW, Zhu HY (2018) Int J Hydrog Energy 43(2124):9935–9942

  26. Durgun E, Ciraci S, Zhou W, Yildirim T (2006) Phys Rev Lett 97:226102

  27. Shevlin SA, Guo ZX (2009) Chem Soc Rev 38:211–225

    Article  CAS  PubMed  Google Scholar 

  28. I. S. U. GAMESS version 02 AUG 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haider Abbas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahal, A., Abbas, H. Capacity of C4H8Ti4 cluster for adsorption of CO2 and CO: a computational study. J Mol Model 26, 126 (2020). https://doi.org/10.1007/s00894-020-04403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04403-7

Keywords

Navigation