Skip to main content
Log in

Ab initio studies of the effect of the fluorination on deprotonation reaction of the benzene sulfonic acid

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We carried out quantum chemical calculations to analyze the effects of fluorination on the activation energy (Ea) of sulfonic group deprotonation by water molecules. The model molecule was 2,3,4,5,6-pentafluorobenzenesulfonic acid (5FBSA), which was obtained by substituting all aromatic hydrogen atoms of benzenesulfonic acid (BSA) for fluorine atoms. The target hydration level was three. Our analysis indicated that the Ea of deprotonation in 5FBSA was lower than that of BSA, suggesting that the cation of 5FBSA was stabilized. Previous studies have reported that fluorinated molecules have a lower Ea to deprotonation and a stabilized deprotonated state even at a hydration level of three. This effect is attributed to the strong electron withdrawing ability of fluorine. However, compared with non-aromatic molecules, the Ea of deprotonation of aromatic molecules is slightly higher, and the overall energy change (ΔE) is lower, even if the molecule is fluorinated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 25:1463–1502 https://doi.org/10.1016/S0079-6700(00)00032-0

    Article  CAS  Google Scholar 

  2. Takeoka Y, Umezawa K, Oshima T et al (2014) Synthesis and properties of hydrophilic–hydrophobic diblock copolymer ionomers based on poly(p-phenylene)s. Polym. Chem. 5:4132–4140 https://doi.org/10.1039/C4PY00082J

    Article  CAS  Google Scholar 

  3. Umezawa K, Oshima T, Yoshizawa-Fujita M et al (2012) Synthesis of hydrophilic--hydrophobic block copolymer ionomers based on polyphenylenes. ACS Macro Lett. 1:969–972

    Article  CAS  Google Scholar 

  4. Souzy R, Ameduri B (2005) Functional fluoropolymers for fuel cell membranes. Prog. Polym. Sci. 30:644–687. https://doi.org/10.1016/j.progpolymsci.2005.03.004

  5. Lindström RW, Oyarce A, Aguinaga LG et al (2013) Performance of phosphonated hydrocarbon ionomer in the fuel cell cathode catalyst layer. J. Electrochem. Soc. 160:F269–F277

    Article  Google Scholar 

  6. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Memb Sci 185:29–39 https://doi.org/10.1016/S0376-7388(00)00632-3

    Article  CAS  Google Scholar 

  7. Ghassemzadeh L, Kreuer K-D, Maier J, Müller K (2010) Chemical degradation of Nafion membranes under mimic fuel cell conditions as investigated by solid-state NMR spectroscopy. J. Phys. Chem. C 114:14635–14645

    Article  CAS  Google Scholar 

  8. Reiter GF, Kolesnikov AI, Paddison SJ et al (2012) Evidence for an anomalous quantum state of protons in nanoconfined water. Phys. Rev. B 85:45403 https://doi.org/10.1103/PhysRevB.85.045403

    Article  Google Scholar 

  9. Agmon N (1996) Hydrogen bonds, water rotation and proton mobility. J. Chim. Phys. 93:1714–1736

    Article  CAS  Google Scholar 

  10. Bae B, Miyatake K, Watanabe M (2009) Effect of the hydrophobic component on the properties of sulfonated poly (arylene ether sulfone) s. Macromolecules 42:1873–1880 https://doi.org/10.1021/ma8026518

    Article  CAS  Google Scholar 

  11. Kopitzke RW, Linkous CA, Anderson HR, Nelson GL (2000) Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes. J. Electrochem. Soc. 147:1677–1681

    Article  CAS  Google Scholar 

  12. Ghassemi H, McGrath JE, Zawodzinski Jr TA (2006) Multiblock sulfonated--fluorinated poly (arylene ether) s for a proton exchange membrane fuel cell. Polymer (Guildf) 47:4132–4139

    Article  CAS  Google Scholar 

  13. Goto K, Rozhanskii I, Yamakawa Y et al (2009) Development of aromatic polymer electrolyte membrane with high conductivity and durability for fuel cell. Polym. J. 41:95 https://doi.org/10.1295/polymj. PJ2008220

    Article  CAS  Google Scholar 

  14. Erdogan T, Unveren EE, Inan TY, Birkan B (2009) Well-defined block copolymer ionomers and their blend membranes for proton exchange membrane fuel cell. J Memb Sci 344:172–181 https://doi.org/10.1016/j.memsci.2009.07.048

    Article  CAS  Google Scholar 

  15. Essafi W, Gebel G, Mercier R (2004) Sulfonated polyimide ionomers: a structural study. Macromolecules 37:1431–1440 https://doi.org/10.1021/ma034965p

    Article  CAS  Google Scholar 

  16. Han SY, Park J, Kim D (2013) Proton-conducting electrolyte membranes based on organosiloxane network/sulfonated poly (ether ether ketone) interpenetrating polymer networks embedding sulfonated mesoporous benzene–silica. J. Power Sources 243:850–858 https://doi.org/10.1016/j.jpowsour.2013.06.072

    Article  CAS  Google Scholar 

  17. Lu J, Tang H, Xu C, Jiang SP (2012) Nafion membranes with ordered mesoporous structure and high water retention properties for fuel cell applications. J. Mater. Chem. 22:5810–5819 https://doi.org/10.1039/C2JM14838B

    Article  CAS  Google Scholar 

  18. Pulido Ayazo JC, Suleiman D (2012) Supercritical fluid processing of Nafion® membranes: methanol permeability and proton conductivity. J. Appl. Polym. Sci. 124:145–154 https://doi.org/10.1002/app.35098

    Article  CAS  Google Scholar 

  19. Zeng J, Zhou Y, Li L, Jiang SP (2011) Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Phys. Chem. Chem. Phys. 13:10249–10257 https://doi.org/10.1039/c1cp20076c

    Article  CAS  Google Scholar 

  20. Sel O, Azais T, Maréchal M et al (2011) Sulfonic and phosphonic acid and bifunctional organic–inorganic hybrid membranes and their proton conduction properties. Chem. Asian J. 6:2992–3000 https://doi.org/10.1016/j.progpolymsci.2011.06.001

    Article  CAS  Google Scholar 

  21. Sakai H, Tokumasu T (2013) Reaction analysis for deprotonation of the sulfonic group of perfluorosulfonic acid molecules at low hydration levels. J. Phys. Chem. A 118:275–282 https://doi.org/10.1021/jp409781s

    Article  Google Scholar 

  22. Sakai H, Tokumasu T (2015) Quantum chemical analysis of the deprotonation of sulfonic acid in a hydrocarbon membrane model at low hydration levels. Solid State Ionics 274:94–99 https://doi.org/10.1016/j.ssi.2015.03.005

    Article  CAS  Google Scholar 

  23. Akinori F, Hironori S, Takashi T (2017) Theoretical study of high performance hydrocarbon-based ion-exchange membranes. Comput Theor Chem 1121:44–48 https://doi.org/10.1016/j.comptc.2017.10.008

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, et al Gaussian∼09 {R} evision {E}.01

  25. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41:653–658

    Article  CAS  Google Scholar 

  26. Raghavachari K (2000) Perspective on “Density functional thermochemistry. III. The role of exact exchange.” Theor. Chem. Accounts 103:361–363

  27. Bachrach SM (2014) Computational organic chemistry. John Wiley & Sons

  28. Boys SF, de Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19:553–566

    Article  CAS  Google Scholar 

  29. Zawodzinski TA, Derouin C, Radzinski S et al (1993) Water uptake by and transport through Nafion®117 membranes. J. Electrochem. Soc. 140:1041–1047

    Article  CAS  Google Scholar 

  30. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88:899–926

    Article  CAS  Google Scholar 

  31. Roy Dennington, Todd A. Keith and JMM (2016) Gauss View, Version6

  32. Wang C, Clark JK, Kumar M, Paddison SJ (2011) An ab initio study of the primary hydration and proton transfer of CF 3SO3H and CF3O(CF2) 2SO3H: effects of the hybrid functional and inclusion of diffuse functions. Solid State Ionics 199–200:6–13 https://doi.org/10.1016/j.ssi.2011.07.002

    Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the New Energy and Industrial Technology Development Organization (NEDO). All calculations were carried out by the computer of the Advanced Fluid Information Research Center, Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Fukushima.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukushima, A., Sakai, H. & Tokumasu, T. Ab initio studies of the effect of the fluorination on deprotonation reaction of the benzene sulfonic acid. J Mol Model 26, 127 (2020). https://doi.org/10.1007/s00894-020-04402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04402-8

Keywords

Navigation