Skip to main content
Log in

Reaction mechanism of synthetic thorium sulfides: theoretical calculation study

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Actinide sulfides are especially significant in actinide chemistry because of their potentials that are used as nuclear fuel and the wide variety of their stoichiometries and physical properties. It is essential for studying the synthesis mechanism of actinide sulfides. In this study, the reactions of thorium cation Th2+ with the facile sulfur-atom donor OCS to produce thorium sulfides have been systematically explored by using density functional. The detailed insights of the primary reaction and secondary reaction paths are reported. We investigated that the multiple bonding characters and complexes involved in reaction exhibit significant covalent character. The reaction rate indicated that the tunneling effect is small compared with the effect of temperature on the rate. This study addresses some of the current limitation in understanding the detailed reaction information of Th2++OCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arney DSJ, Schnabel RC, And BCS, Bums CJ (1996). J Am Chem Soc 118(28):6780–6781. https://doi.org/10.1021/ja960221y

    Article  CAS  Google Scholar 

  2. Wang X, Andrews L, Thanthiriwatte KS, Dixon DA (2013). Inorg Chem 52(18):10275–10285. https://doi.org/10.1021/ic400560k

    Article  CAS  PubMed  Google Scholar 

  3. Li P, Niu W, Gao T (2014). RSC Adv 4:29806–29817. https://doi.org/10.1039/c4ra03525a

    Article  CAS  Google Scholar 

  4. Duan M, Li P, Zhao H, Xie F, Ma J (2019). Inorg Chem 58:3425–3434. https://doi.org/10.1021/acs.inorgchem.8b03538

    Article  CAS  PubMed  Google Scholar 

  5. Fortier S, Hayton TW (2010). Coord Chem Rev 254(3–4):197–214. https://doi.org/10.1016/j.ccr.2009.06.003

    Article  CAS  Google Scholar 

  6. Hayton TW (2013). Chem Commun 49:2956–2973. https://doi.org/10.1039/C3CC39053E

    Article  CAS  Google Scholar 

  7. Wang B, Xia C, Fang H, Chen W, Zhang Y, Huang X (2018). Phys Chem Chem Phys 20:21184–21193. https://doi.org/10.1039/C8CP03071E

    Article  CAS  PubMed  Google Scholar 

  8. Zhao H, Li P, Duan M, Xie F, Ma J (2019). RSC Adv 9:17119–17128. https://doi.org/10.1039/C9RA02098E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cla’udia CLP, Marsden CJ, Marçalo J, John KG (2011). Phys Chem Chem Phys 13:12940–12958. https://doi.org/10.1039/c1cp20996e

    Article  CAS  Google Scholar 

  10. Andrews L, Wang X, Liang B, Ruipérez F, Infante I, Raw AD, Ibers JA (2011). Eur J Inorg Chem 2011(28):4457–4463. https://doi.org/10.1002/ejic.201100561

    Article  CAS  Google Scholar 

  11. Noel H, Marouille JY (1984). J Solid-State Chem 52(3):197–202. https://doi.org/10.1016/0022-4596(84)90001-X

    Article  CAS  Google Scholar 

  12. Jin GB, Raw AD, Skanthakumar S, Haire RG, Soderholm L, Ibers JA (2010). J Solid State Chem 183(3):547–550. https://doi.org/10.1016/j.jssc.2009.12.013

    Article  CAS  Google Scholar 

  13. Liang B, Andrews L (2002). J Phys Chem A 106(16):4038–4041. https://doi.org/10.1021/jp014301m

    Article  CAS  Google Scholar 

  14. Liang B, Andrews L, Ismail N, Marsden CJ (2002). Inorg Chem 41(11):2811–2813. https://doi.org/10.1021/ic0255407

    Article  CAS  PubMed  Google Scholar 

  15. Armentrout PB, Beauchamp JL (1980). Chem Phys 50(1):27–36. https://doi.org/10.1016/0301-0104(80)87022-4

    Article  CAS  Google Scholar 

  16. Lucena AF, Bandeira NAG, Pereira Cláudia CL, Gibsone JK, Marçalo J (2017). Phys Chem Chem Phys 19(16):10685–10694. https://doi.org/10.1039/c7cp01446e

    Article  CAS  PubMed  Google Scholar 

  17. Pereira CCL, Michelini MDC, Marçalo J, Gong Y, John KG (2013). Inorg Chem 52(24):14162–14167. https://doi.org/10.1021/ic4020493

    Article  CAS  PubMed  Google Scholar 

  18. Yu W, Andrews L, Wang X (2017). J Phys Chem A 121(46):8843–8855. https://doi.org/10.1021/acs.jpca.7b09454

    Article  CAS  PubMed  Google Scholar 

  19. Chen X, Li Q, Andrews L, Gong Y (2018). J Phys Chem A 122(35):7099–7106. https://doi.org/10.1021/acs.jpca.8b06810

    Article  CAS  PubMed  Google Scholar 

  20. Fu R, Lu T, Chen F (2014). Acta Phys -Chim Sin 30(4):628–639. https://doi.org/10.3866/PKU.WHXB201401211

    Article  CAS  Google Scholar 

  21. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press Oxford University, Oxford

    Google Scholar 

  22. Becke AD, Edgecombe KE (1990). J Phys Chem 92:5397–5403. https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  23. Mayer I (1985). Chem Phys Lett 979(3):270–274. https://doi.org/10.1016/0009-2614(83)80005-0

    Article  Google Scholar 

  24. Fernandez-Ramos A, Ellingson BA, Garrett BC, Truhlar DG (2007). Rev Comput Chem 23:125–232. https://doi.org/10.1002/9780470116449.ch3

    Article  CAS  Google Scholar 

  25. Eckart C (1930). Phys Rev 35:1303–1309. https://doi.org/10.1103/PhysRev.35.1303

    Article  CAS  Google Scholar 

  26. Wigner E (1932). Z Phys Chem 19:203–216. https://doi.org/10.1515/zpch-1932-0120

    Article  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B.01, Gaussian, Inc, Wallingford CT

  28. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  29. Perdew JP, Burke K, Wang Y (1996). Phys Rev B 54:16533–16539. https://doi.org/10.1103/PhysRevB.54.16533

    Article  CAS  Google Scholar 

  30. Krishnan R, Binkley JS, Seeger R, Pople JA (1980). J Chem Phys 72:650–654. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  31. Blaudeau JP, McGrath MP, Curtiss LA, Radom L (1997). J Chem Phys 107:5016–5021. https://doi.org/10.1063/1.474865

    Article  CAS  Google Scholar 

  32. Küchle W, Dolg M, Stoll H, Preuss H (1994). J Chem Phys 100(10):7535–7542. https://doi.org/10.1063/1.466847

    Article  Google Scholar 

  33. Kashinski DO, Chase GM, Nelson RG, Di Nallo OE, Scales AN, Vanderley DL, Byrd EFC (2017). J Phys Chem A 121(11):2265–2273. https://doi.org/10.1021/acs.jpca.6b12147

    Article  CAS  PubMed  Google Scholar 

  34. Liberto GD, Conte R, Ceotto M (2018). J Chem Phys 148(10):104302–104323. https://doi.org/10.1063/1.5023155

    Article  CAS  PubMed  Google Scholar 

  35. Kreienborg NM, Merten C (2019). Phys Chem Chem Phys 21:3506–3511. https://doi.org/10.1039/C8CP02395F

    Article  CAS  PubMed  Google Scholar 

  36. Lu T, Chen F (2012). J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  37. Zhao J, Beckers H, Huang T, Wang X, Riedel S (2018). Inorg Chem 57(4):2218–2227. https://doi.org/10.1021/acs.inorgchem.7b03109

    Article  CAS  PubMed  Google Scholar 

  38. Xu B, Shi P, Huang T, Wang X, Andrews L (2017). J Phys Chem A 121(20):3898–3908. https://doi.org/10.1021/acs.jpca.6b12217

    Article  CAS  PubMed  Google Scholar 

  39. Manzetti S, Lu T, Behzadi H, Estrafili MD, Thi Le H, Holger V (2015). RSC Adv 5:78192–78208. https://doi.org/10.1039/C5RA17148B

    Article  CAS  Google Scholar 

  40. Canneaux S, Bohr F, Henon E (2013). J Comput Chem 35:82–93. https://doi.org/10.1002/jcc.23470

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Sobereva for many helpful discussions and providing us with the Multiwfn package.

Funding

This work is supported by National Natural Science Foundation of China (NSFC) (Grant No. 11604187, No. 11647040), the Natural Science Young Foundation of Shanxi Province (Grant No. 201801D221004), Cooperation projects of Institute of Applied Physics and Computational Mathematics, and Open Fund of Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education (Tsinghua University, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

See supporting information for relative energies of the stationary points on the Path A, Path B and Path C, topological properties of the charge density calculated involved in the Path C, optimized Cartesian x, y, z coordinates for the Path A and B, Path C, ESP-mapped molecular vdW surfaces of OCS molecular and structures, ELF, selected geometric parameters of stationary points on the Path A, Path B and Path C PES, and Information about reaction rate. (DOCX 1959 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Li, P., Duan, M. et al. Reaction mechanism of synthetic thorium sulfides: theoretical calculation study. J Mol Model 26, 123 (2020). https://doi.org/10.1007/s00894-020-04392-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04392-7

Keywords

Navigation