Skip to main content
Log in

Structural, electronic, and energetic investigations of acrolein adsorption on B36 borophene nanosheet: a dispersion-corrected DFT insight

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The adsorption of acrolein (AC) onto the surface of B36 borophene nanosheet was studied using dispersion-corrected density functional theory (DFT). The structural and electronic properties were scrutinized by several quantum chemical parameters such as HOMO–LUMO gap, condensed Fukui function, molecular electrostatic potential (ESP), and the density of states (DOS). The non-covalent interactions (NCI) were explored by combined reduced density gradient (RDG-NCI) and energy decomposition analysis (EDA) techniques. It was found that the adsorption of acrolein on both convex and concave surfaces of borophene is mainly governed by van der Waals interactions. Our calculations showed that the adsorption energy is strengthened and favored when multiple acrolein molecules adsorb on the edge sides of borophene through their terminal carbonyl oxygen atom. Furthermore, the calculated HOMO–LUMO energy gaps were significantly reduced upon adsorption affecting, therefore, the electrical conductance of borophene. These results should be useful in designing acrolein sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang P, Wang F, Yu M, Zhuang X, Feng X (2018) Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem Soc Rev 47:7426–7451

    Article  CAS  PubMed  Google Scholar 

  2. Schwierz F, Pezoldt J, Granzner R (2015) Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7:8261–8283

    Article  CAS  PubMed  Google Scholar 

  3. Hynek DJ, Pondick JV, Cha JJ (2019) The development of 2D materials for electrochemical energy applications: a mechanistic approach. APL Mater 7:030902

    Article  CAS  Google Scholar 

  4. Chhowalla M, Jena D, Zhang H (2016) Two-dimensional semiconductors for transistors. Nat Rev Mater 1:16052

    Article  CAS  Google Scholar 

  5. Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126

    Article  CAS  Google Scholar 

  6. Wang Z, Mi B (2017) Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ Sci Technol 51:8229–8244

    Article  CAS  PubMed  Google Scholar 

  7. Jun BM, Kim S, Heo J, Park CM, Her N, Jang M, Huang Y, Han J, Yoon Y (2019) Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res 12:471–487

    Article  CAS  Google Scholar 

  8. Kemp KC, Seema H, Saleh M, Le NH, Mahesh K, Chandra V, Kim KS (2013) Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5:3149–3171

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Ma F, Sun M (2017) Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv 7:16801–16822

    Article  CAS  Google Scholar 

  10. Kurapati R, Kostarelos K, Prato M, Bianco A (2016) Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Adv Mater 28:6052–6074

    Article  CAS  PubMed  Google Scholar 

  11. Pradeep AV, Satya Prasad SV, Suryam LV, Prasanna Kumari P (2019) A review on 2D materials for bio-applications. Mater Today Proc 19:380–383

    Article  CAS  Google Scholar 

  12. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  13. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  14. Senese A, Chalifoux W (2019) Nanographene and graphene nanoribbon synthesis via alkyne benzannulations. Molecules 24:118

    Article  CAS  Google Scholar 

  15. Hosseinzadeh A, Bidmeshkipour S, Abdi Y, Arzi E, Mohajerzadeh S (2018) Graphene based strain sensors: a comparative study on graphene and its derivatives. Appl Surf Sci 448:71–77

    Article  CAS  Google Scholar 

  16. Calogero G, Alcón I, Papior N, Jauho AP, Brandbyge M (2019) Quantum interference engineering of nanoporous graphene for carbon nanocircuitry. J Am Chem Soc 141:13081–13088

    Article  CAS  PubMed  Google Scholar 

  17. Liao L, Peng H, Liu Z (2014) Chemistry makes graphene beyond graphene. J Am Chem Soc 136:12194–12200

    Article  CAS  PubMed  Google Scholar 

  18. Tao J, Tang H, Patra A, Bhattarai P, Perdew JP (2019) Erratum: Modeling the physisorption of graphene on metals. Phys Rev B 97 (2018) 165403. Phys Rev B Condens Matter Mater Phys 99:169901

    Article  CAS  Google Scholar 

  19. Tang Q, Zhou Z, Chen Z (2015) Innovation and discovery of graphene-like materials via density-functional theory computations: innovation and discovery of graphene-like materials via DFT computations. WIREs Comput Mol Sci 5:360–379

    Article  CAS  Google Scholar 

  20. Rahali S, Belhocine Y, Touzeau J, Tangour B, Maurel F, Seydou M (2017) Balance between physical and chemical interactions of second-row diatomic molecules with graphene sheet. Superlattice Microst 102:45–55

    Article  CAS  Google Scholar 

  21. Saxena S, Chaudhary RP, Shukla S (2016) Stanene: atomically thick free-standing layer of 2D hexagonal tin. Sci Rep 6:31073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao J, Zhang G, Zhang YW (2016) Exploring Ag(111) substrate for epitaxially growing monolayer stanene: a first-principles study. Sci Rep 6:29107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu F, Chen W, Xu Y, Gao C, Guan D, Liu C, Qian D, Zhang SC, Jia JF (2015) Epitaxial growth of two-dimensional stanene. Nat Mater 14:1020–1025

    Article  CAS  PubMed  Google Scholar 

  24. Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, Xian L, Rubio A, Le Lay G (2018) Large area planar stanene epitaxially grown on Ag(111). 2D Mater 5:025002

    Article  CAS  Google Scholar 

  25. Dávila ME, Xian L, Cahangirov S, Rubio A, Le Lay G (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16:095002

    Article  CAS  Google Scholar 

  26. Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J, Claessen R (2017) Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material. Science 357:287–290

    Article  CAS  PubMed  Google Scholar 

  27. Mannix AJ, Zhou XF, Kiraly B, Wood JD, Alducin D, Myers BD, Liu X, Fisher BL, Santiago U, Guest JR, Yacaman MJ, Ponce A, Oganov AR, Hersam MC, Guisinger NP (2015) Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350:1513–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K (2016) Experimental realization of two-dimensional boron sheets. Nat Chem 8:563–568

    Article  CAS  PubMed  Google Scholar 

  29. Tai G, Hu T, Zhou Y, Wang X, Kong J, Zeng T, You Y, Wang Q (2015) Synthesis of atomically thin boron films on copper foils. Angew Chem Int Ed 54:15473–15477

    Article  CAS  Google Scholar 

  30. Zhang Z, Yang Y, Gao G, Yakobson BI (2015) Two-dimensional boron monolayers mediated by metal substrates. Angew Chem Int Ed 54:13022–13026

    Article  CAS  Google Scholar 

  31. Wu X, Dai J, Zhao Y, Zhuo Z, Yang J, Zeng XC (2012) Two-dimensional boron monolayer sheets. ACS Nano 6:7443–7453

    Article  CAS  PubMed  Google Scholar 

  32. Liu X, Zhang Z, Wang L, Yakobson BI, Hersam MC (2018) Intermixing and periodic self-assembly of borophene line defects. Nat Mater 17:783–788

    Article  CAS  PubMed  Google Scholar 

  33. Boustani I (1997) Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of Bn (n=2–14). Phys Rev B 55:16426

    Article  CAS  Google Scholar 

  34. Li WL, Chen X, Jian T, Chen TT, Li J, Wang LS (2017) From planar boron clusters to borophenes and metalloborophenes. Nat Rev Chem 1:0071

    Article  CAS  Google Scholar 

  35. Luo XM, Jian T, Cheng LJ, Li WL, Chen Q, Li R, Zhai HJ, Li SD, Boldyrev AI, Li J, Wang LS (2017) \( {B}_{26}^{-} \): the smallest planar boron cluster with a hexagonal vacancy and a complicated potential landscape. Chem Phys Lett 683:336–341

  36. Zhao J, Wang L, Li F, Chen Z (2010) B80 and other medium-sized boron clusters: core-shell structures, not hollow cages. J Phys Chem A 114:9969–9972

    Article  CAS  PubMed  Google Scholar 

  37. Jian T, Chen X, Li SD, Boldyrev AI, Li J, Wang LS (2019) Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem Soc Rev 48:3550–3591

    Article  CAS  PubMed  Google Scholar 

  38. Piazza ZA, Hu HS, Li WL, Zhao YF, Li J, Wang LS (2014) Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat Commun 5:3113

    Article  PubMed  CAS  Google Scholar 

  39. Tang H, Ismail-Beigi S (2007) Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys Rev Lett 99:115501

    Article  PubMed  CAS  Google Scholar 

  40. Yang X, Ding Y, Ni J (2008) Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys Rev B 77:041402

    Article  CAS  Google Scholar 

  41. Penev ES, Bhowmick S, Sadrzadeh A, Yakobson BI (2012) Polymorphism of two-dimensional boron. Nano Lett 12:2441–2445

    Article  CAS  PubMed  Google Scholar 

  42. Er S, de Wijs GA, Brocks G (2009) DFT study of planar boron sheets: a new template for hydrogen storage. J Phys Chem C 113:18962–18967

    Article  CAS  Google Scholar 

  43. Zhang Z, Penev ES, Yakobson BI (2017) Two-dimensional boron: structures, properties and applications. Chem Soc Rev 46:6746–6763

    Article  CAS  PubMed  Google Scholar 

  44. Wang ZQ, Lü TY, Wang HQ, Feng YP, Zheng JC (2019) Review of borophene and its potential applications. Front Phys 14:33403

    Article  CAS  Google Scholar 

  45. Jiang HR, Lu Z, Wu MC, Ciucci F, Zhao TS (2016) Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23:97–104

    Article  CAS  Google Scholar 

  46. Zhang X, Hu J, Cheng Y, Yang HY, Yao Y, Yang SA (2016) Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8:15340–15347

    Article  CAS  PubMed  Google Scholar 

  47. Shukla V, Wärnå J, Jena NK, Grigoriev A, Ahuja R (2017) Toward the realization of 2D borophene based gas sensor. J Phys Chem C 121:26869–26876

    Article  CAS  Google Scholar 

  48. Omidvar A (2017) Borophene: a novel boron sheet with a hexagonal vacancy offering high sensitivity for hydrogen cyanide detection. Comput Theor Chem 1115:179–184

    Article  CAS  Google Scholar 

  49. Yeager RP, Kushman M, Chemerynski S, Weil R, Fu X, White M, Callahan-Lyon P, Rosenfeldt H (2016) Proposed mode of action for acrolein respiratory toxicity associated with inhaled tobacco smoke. Toxicol Sci 151:347–364

    Article  CAS  PubMed  Google Scholar 

  50. Feng Z, Hu W, Hu Y, Tang MS (2006) Acrolein is a major cigarette-related lung cancer agent: preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci 103:15404–15409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rastegar SF, Hadipour NL, Tabar MB, Soleymanabadi H (2013) DFT studies of acrolein molecule adsorption on pristine and Al-doped graphenes. J Mol Model 19:3733–3740

    Article  CAS  PubMed  Google Scholar 

  52. Karami AR (2015) Acrolein adsorption on graphyne nanotube: a density functional theory study. Fuller Nanotub Car N 23:885–889

    Article  CAS  Google Scholar 

  53. Dheivamalar S, Banu KB (2019) A DFT study on functionalization of acrolein on Ni-doped (ZnO)6 nanocluster in dye-sensitized solar cells. Heliyon 5:e02903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abbasi A, Sardroodi JJ (2016) The interaction of acrolein with pristine and N-doped TiO2 anatase nanoparticles: a DFT study. Acta Chim Slov 63:713–720

    Article  CAS  PubMed  Google Scholar 

  55. Pirillo S, López-Corral I, Germán E, Juan A (2014) Density functional study of acrolein adsorption on Pt(111). Vacuum 99:259–264

    Article  CAS  Google Scholar 

  56. Loffreda D, Jugnet Y, Delbecq F, Bertolini JC, Sautet P (2004) Coverage dependent adsorption of acrolein on Pt(111) from a combination of first principle theory and HREELS study. J Phys Chem B 108:9085–9093

    Article  CAS  Google Scholar 

  57. Kang GJ, Chen ZX, Li Z (2011) Acrolein adsorption on gold clusters, a theoretical study of conjugation effect on C=C and C=O interaction with Au clusters. Catal Lett 141:996–1003

    Article  CAS  Google Scholar 

  58. Ferullo R, Branda MM, Illas F (2010) Coverage dependence of the structure of acrolein adsorbed on Ag(111). J Phys Chem Lett 1:2546–2549

    Article  CAS  Google Scholar 

  59. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  PubMed  CAS  Google Scholar 

  60. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  61. Johnson ER, Becke AD (2006) A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections. J Chem Phys 124:174104

    Article  PubMed  CAS  Google Scholar 

  62. Becke AD, Johnson ER (2005) A density-functional model of the dispersion interaction. J Chem Phys 123:154101

    Article  PubMed  CAS  Google Scholar 

  63. Becke AD (1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J Chem Phys 107:8554–8560

    Article  CAS  Google Scholar 

  64. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  65. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  Google Scholar 

  66. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835

    Article  Google Scholar 

  67. Weigend F (2006) Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057–1065

    Article  CAS  PubMed  Google Scholar 

  68. Neese F (2018) Software update: the ORCA program system. Version 4.0: software update. Wiley Interdiscip Rev Comput Mol Sci 8:e1327

    Article  Google Scholar 

  69. Neese F, Wennmohs F, Hansen A, Becker U (2009) Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem Phys 356:98–109

    Article  CAS  Google Scholar 

  70. Neese F (2003) An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J Comput Chem 24:1740–1747

    Article  CAS  PubMed  Google Scholar 

  71. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Auxiliary basis sets to approximate Coulomb potentials. Chem Phys Lett 240:283–290

    Article  CAS  Google Scholar 

  72. Kruse H, Grimme S (2012) A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J Chem Phys 136:154101

    Article  PubMed  CAS  Google Scholar 

  73. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminf 4:17

    Article  CAS  Google Scholar 

  74. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  CAS  Google Scholar 

  76. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  77. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  78. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  79. Valadbeigi Y, Farrokhpour H, Tabrizchi M (2015) Adsorption of small gas molecules on B36 nanocluster. J Chem Sci 127:2029–2038

    Article  CAS  Google Scholar 

  80. Rostami Z, Soleymanabadi H (2016) N–H bond cleavage of ammonia on graphene-like B36 borophene: DFT studies. J Mol Model 22:70

    Article  PubMed  CAS  Google Scholar 

  81. Rastgou A, Soleymanabadi H, Bodaghi A (2017) DNA sequencing by borophene nanosheet via an electronic response: a theoretical study. Microelectron Eng 169:9–15

    Article  CAS  Google Scholar 

  82. Shahbazi Kootenaei A, Ansari G (2016) B36 borophene as an electronic sensor for formaldehyde: quantum chemical analysis. Phys Lett A 380:2664–2668

    Article  CAS  Google Scholar 

  83. Solimannejad M, Kamalinahad S, Shakerzadeh E (2017) Lin@B36 (n = 1, 2) nanosheet with remarkable electro-optical properties: a DFT study. J Electron Mater 46:4420–4425

    Article  CAS  Google Scholar 

  84. Mohsenpour Z, Shakerzadeh E, Zare M (2017) Quantum chemical description of formaldehyde (HCHO), acetaldehyde (CH3CHO) and propanal (CH3CH2CHO) pollutants adsorption behaviors onto the bowl-shaped B36 nanosheet. Adsorption 23:1041–1053

    Article  CAS  Google Scholar 

  85. Shahsavar A, Mohajeri A (2018) Impact of position and number of nitrogen atom substitution on the curvature and hydrogen adsorption properties of metallized borophene. J Mater Sci 53:4540–4553

    Article  CAS  Google Scholar 

  86. Li WY, Zhao X, Dang JS (2019) A mechanistic study of B36-supported atomic au promoted CO2 electroreduction to formic acid. J Mater Chem A 7:13935–13940

    Article  CAS  Google Scholar 

  87. Hassani A, Mosavian MTH, Ahmadpour A, Farhadian N (2016) A comparative theoretical study of methane adsorption on the nitrogen, boron and lithium doped graphene sheets including density functional dispersion correction. Comput Theor Chem 1084:43–50

    Article  CAS  Google Scholar 

  88. Hosseinian A, Asadi Z, Edjlali L, Bekhradnia A, Vessally E (2017) NO2 sensing properties of a borazine doped nanographene: a DFT study. Comput Theor Chem 1106:36–42

    Article  CAS  Google Scholar 

  89. Montejo-Alvaro F, Oliva J, Herrera-Trejo M, Hdz-García HM, Mtz-Enriquez AI (2019) DFT study of small gas molecules adsorbed on undoped and N-, Si-, B-, and Al-doped graphene quantum dots. Theor Chem Accounts 138:37

    Article  CAS  Google Scholar 

  90. Jin P, Hou Q, Tang C, Chen Z (2015) Computational investigation on the endohedral borofullerenes M@B40 (M=Sc, Y, La). Theor Chem Accounts 134:1–10

    Article  CAS  Google Scholar 

  91. Allal H, Belhocine Y, Zouaoui E (2018) Computational study of some thiophene derivatives as aluminium corrosion inhibitors. J Mol Liq 265:668–678

    Article  CAS  Google Scholar 

  92. Ammouchi N, Allal H, Belhocine Y, Bettaz S, Zouaoui E (2020) DFT computations and molecular dynamics investigations on conformers of some pyrazinamide derivatives as corrosion inhibitors for aluminum. J Mol Liq 300:112309

    Article  CAS  Google Scholar 

  93. Sánchez-Márquez J (2019) New advances in conceptual-DFT: an alternative way to calculate the Fukui function and dual descriptor. J Mol Model 25:123

    Article  PubMed  Google Scholar 

  94. Wu J, Yan H, Zhong A, Chen H, Jin Y, Dai G (2019) Theoretical and conceptual DFT study of pnicogen- and halogen-bonded complexes of PH2X---BrCl. J Mol Model 25:28

    Article  PubMed  CAS  Google Scholar 

  95. Vessally E, Soleimani-Amiri S, Hosseinian A, Edjlali L, Bekhradnia A (2017) The Hartree-Fock exchange effect on the CO adsorption by the boron nitride nanocage. Phys E 87:308–311

    Article  CAS  Google Scholar 

  96. De H, Paul A, Datta A (2017) Theoretical study of Au4 thymine, Au20 and Ag20 uracil and thymine complexes for surface enhanced Raman scattering. Comput Theor Chem 1111:1–13

    Article  CAS  Google Scholar 

  97. Pahlavan F, Hosseinnezhad S, Samieadel A, Hung A, Fini E (2019) Fused aromatics to restore molecular packing of aged bituminous materials. Ind Eng Chem Res 58:11939–11953

    Article  CAS  Google Scholar 

  98. Ni Y, Pan Y, Zhang J, Gu X, Pan X, Jiang J, Wang Q (2018) Theoretical study on reaction mechanism of thermal decomposition of dialkyl peroxides. Comput Theor Chem 1135:11–17

    Article  CAS  Google Scholar 

  99. Zhang L, Wang JM, Wang QR, Zhang DW, Li ZT, Li ZM (2015) Theoretical investigation on SnCl4-catalyzed tandem dimerization/oxy-2-azonia-Cope rearrangements between β,γ-unsaturated ketones and imines. Theor Chem Accounts 134:4

    Article  CAS  Google Scholar 

  100. Liang Z, Wang H, Zheng X, Wang X (2020) Theoretical investigation on rotaxanes containing a pyridyl-acyl hydrazone moiety: chemical Z → E and photochemical E → Z isomerizations. Theor Chem Accounts 139:39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Allal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 587 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allal, H., Belhocine, Y., Rahali, S. et al. Structural, electronic, and energetic investigations of acrolein adsorption on B36 borophene nanosheet: a dispersion-corrected DFT insight. J Mol Model 26, 128 (2020). https://doi.org/10.1007/s00894-020-04388-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04388-3

Keywords

Navigation