Skip to main content

Advertisement

Log in

Body temperature of free-ranging koalas (Phascolarctos cinereus) in south-east Queensland

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The distribution of the koala (Phascolarctos cinereus) in Queensland is predicted to contract as a result of climate change, driven by the frequency, intensity and duration of heatwaves and drought. However, little is known about the physiological responses of this species to environmental extremes under field conditions. This study aimed to establish the efficacy of surgically implanted thermal radio transmitters and data loggers to measure the body temperature of free-ranging koalas across a range of environmental conditions and ambient temperatures. Five free-ranging koalas in southeast Queensland were implanted with thermal transmitters and data loggers waxed together as a single package. Body temperatures were recorded for variable periods ranging from 3 to 12 months. Diurnal rhythms in body temperature were detected irrespective of season. The long-term diurnal body temperature peak for all koalas occurred between 16:00 and 17:00 h and body temperature was 36.7–36.9 °C, the long-term nadir occurred between 07:00 and 08:00 h and body temperature was 35.4–35.7 °C. Koala body temperatures as low as 34.2 °C and as high as 39.0 °C were recorded. Thermolability became apparent when ambient temperatures were outside the deduced thermal neutral zone for koalas (14.5–24.5 °C): heat was accumulated during the day and dissipated during the cool of the night. While this study is the first to report on body temperature of free-ranging koalas in their normal behavioural context, further investigations are necessary to determine the physiological boundaries of the thermal niche for this species, in order to better equip models that will more accurately predict the impacts of climate change on koalas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam D, Johnston SD, Beard L, Nicholson V, Lisle A, Gaughan J, Larkin R, Theilemann P, McKinnon A, Ellis W (2016) Surgical implantation of temperature-sensitive transmitters and data-loggers to record body temperature in koalas (Phascolarctos cinereus). Aust Vet J 94(1–2):42–47. https://doi.org/10.1111/avj.12393

    Article  CAS  Google Scholar 

  • Adams-Hosking C, Grantham HS, Rhodes JR, McAlpine C, Moss PT (2011a) Modelling climate-change-induced shifts in the distribution of the koala. Wildl Res 38(2):122–130. https://doi.org/10.1071/WR10156

    Article  Google Scholar 

  • Adams-Hosking C, Moss P, Rhodes J, Grantham H, McAlpine C (2011b) Modelling the potential range of the koala at the last glacial maximum: future conservation implications. Australian Zoologist 35(4):983–990. https://doi.org/10.7882/az.2011.052

    Article  Google Scholar 

  • Aujard F, Vasseur F (2001) Effect of ambient temperature on the body temperature rhythm of male gray mouse lemurs (Microcebus murinus). Int J Primatol 22(1):43–56. https://doi.org/10.1023/a:1026461914534

    Article  Google Scholar 

  • Briscoe NJ, Handasyde KA, Griffiths SR, Porter WP, Krockenberger A, Kearney MR (2014) Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals. Biol Lett 10(6). https://doi.org/10.1098/rsbl.2014.0235

  • Buffenstein R, Woodley R, Thomadakis C, Daly TJM, Gray DA (2001) Cold-induced changes in thyroid function in a poikilothermic mammal, the naked mole-rat. Am J Phys Regul Integr Comp Phys 280(1):R149–R155. https://doi.org/10.1152/ajpregu.2001.280.1.R149

    Article  CAS  Google Scholar 

  • Clifton ID (2010) High koala mortality associated with low browse moisture in tropical environments. Australian Mammalogy 32(2):157–159. https://doi.org/10.1071/AM10015

    Article  Google Scholar 

  • Clifton ID, Ellis WAH, Melzer A, Tucker G (2007) Water turnover and the northern range of the koala (Phascolarctos cinereus). Australian Mammalogy 29(1):85–88

    Article  Google Scholar 

  • Cooper CE, Withers PC (2004) Patterns of body temperature variation and torpor in the numbat, Myrmecobius fasciatus (Marsupialia: Myrmecobiidae). J Therm Biol 29. https://doi.org/10.1016/j.jtherbio.2004.05.003

  • Cooper CE, Withers PC (2012) Does season or captivity influence the physiology of an endangered marsupial, the numbat (Myrmecobius fasciatus)? J Mammal 93(3):771–777. https://doi.org/10.1644/11-mamm-a-084.2

    Article  Google Scholar 

  • Cooper CE, Withers PC, Munns SL, Geiser F, Buttemer WA (2018) Geographical variation in the standard physiology of brushtail possums (Trichosurus): implications for conservation translocations. Conservation physiology 6(1). https://doi.org/10.1093/conphys/coy042

  • Crowther MS, Lunney D, Lemon J, Stalenberg E, Wheeler R, Madani G, Ross KA, Ellis M (2014) Climate-mediated habitat selection in an arboreal folivore. Ecography 37(4):336–343. https://doi.org/10.1111/j.1600-0587.2013.00413.x

    Article  Google Scholar 

  • Dawson TJ, Blaney CE, McCarron HCK, Maloney SK (2007) Dehydration, with and without heat, in kangaroos from mesic and arid habitats: different thermal responses including varying patterns in heterothermy in the field and laboratory. J Comp Physiol B 177(7):797–807. https://doi.org/10.1007/s00360-007-0176-1

    Article  Google Scholar 

  • Degabriele R, Dawson TJ (1979) Metabolism and heat balance in an arboreal marsupial, the koala (Phascolarctos cinereus). J Comp Physiol A 134(4):293–301. https://doi.org/10.1007/BF00709996

    Article  Google Scholar 

  • Descovich KA, Johnston S, Lisle A, Nicolson V, Janssen T, Brooks P, Phillips CJC (2017) Long-term measurement of body temperature in the southern hairy-nosed wombat (Lasiorhinus latifrons). Australian Mammalogy 39(1):48–55

    Article  Google Scholar 

  • Dickens RK (1975) The koala (Phascolarctos cinereus) past, present and future. Aust Vet J 51(10):459–463. https://doi.org/10.1111/j.1751-0813.1975.tb02379.x

    Article  CAS  Google Scholar 

  • Ellis W, Melzer A, Green B, Newgrain K, Hindell MA, Carrick FN (1995) Seasonal variation in water flux, field metabolic rate and food consumption of free-ranging koalas (Phascolarctos Cinereus). Australian Journal of Zoology 43(1):59–68. https://doi.org/10.1071/ZO9950059

    Article  Google Scholar 

  • Ellis W, Melzer A, Clifton I, Carrick F (2010) Climate change and the koala, Phascolarctos cinereus: water and energy. Aus Zool 35(2):369–377. https://doi.org/10.7882/AZ.2010.025

    Article  Google Scholar 

  • Ellis W, Bercovitch F, FitzGibbon S, Roe P, Wimmer J, Melzer A, Wilson R (2011) Koala bellows and their association with the spatial dynamics of free-ranging koalas. Behav Ecol 22(2):372–377. https://doi.org/10.1093/beheco/arq216

    Article  Google Scholar 

  • Ellis W, FitzGibbon S, Pye G, Whipple B, Barth B, Johnston S, Seddon J, Melzer A, Higgins D, Bercovitch F (2015) The role of bioacoustic signals in koala sexual selection: insights from seasonal patterns of associations revealed with GPS-proximity units. PLoS One 10(7):e0130657. https://doi.org/10.1371/journal.pone.0130657

    Article  CAS  Google Scholar 

  • Gaughan JB, Mader TL (2014) Body temperature and respiratory dynamics in un-shaded beef cattle. Int J Biometeorol 58(7):1443–1450

    Article  CAS  Google Scholar 

  • Gaughan JB, Mader TL, Holt SM (2008) Cooling and feeding strategies to reduce heat load of grain-fed beef cattle in intensive housing. Livest Sci 113(2):226–233. https://doi.org/10.1016/j.livsci.2007.03.014

    Article  Google Scholar 

  • Geiser F (1988) Daily torpor and thermoregulation in antechinus (Marsupialia): influence of body mass, season, development, reproduction, and sex. Oecologia 77(3):395–399

    Article  Google Scholar 

  • Geiser F (2013) Hibernation. Curr Biol 23(5):R188–R193. https://doi.org/10.1016/j.cub.2013.01.062

    Article  CAS  Google Scholar 

  • Geiser F, Stawski C (2011) Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Integr Comp Biol 51(3):337–348. https://doi.org/10.1093/icb/icr042

    Article  Google Scholar 

  • Geiser F, Stawski C, Bondarenco A, Pavey CR (2011) Torpor and activity in a free-ranging tropical bat: implications for the distribution and conservation of mammals? Naturwissenschaften 98(5):447–452

    Article  Google Scholar 

  • Gordon G, Brown AS, Pulsford T (1988) A koala (Phascolarctos cinereus Goldfuss) population crash during drought and heatwave conditions in South-Western Queensland. Aust J Ecol 13(4):451–461. https://doi.org/10.1111/j.1442-9993.1988.tb00993.x

    Article  Google Scholar 

  • Grigg G, Beard L (2000) Hibernation by echidnas in mild climates: hints about the evolution of endothermy? In: Heldmaier G, Klingenspor M (eds) Life in the cold. Springer, Berlin Heidelberg, pp 5–19

    Chapter  Google Scholar 

  • Grigg GC, Beard LA (2001) Application of radio telemetry to studies of the physiological ecology of vertebrates. In: Eiler JH, Alcorn DJ, Neuman MR (eds) 15th international symposium on biotelemetry, vol 15. Thomson-shore, Inc., Juneau, pp 535–551

  • Grigg G, Kirshner D (2015) Biology and evolution of Crocodylians. CSIRO Publishing, Victoria

    Book  Google Scholar 

  • Grigg GC, Beard LA, Augee ML (1989) Hibernation in a monotreme, the echidna (Tachyglossus aculeatus). Comp Biochem Physiol A Physiol 92(4):609–612

    Article  CAS  Google Scholar 

  • Grigg GC, Augee M, Beard L (1992a) Thermal relations of free-living echidnas during activity and in hibernation in a cold climate. In: Augee M (ed) Platypus and echidnas. The Royal Zoological Society of NSW, Sydney, pp 160–173

    Google Scholar 

  • Grigg GC, Beard L, Grant TR, Augee M (1992b) Body-temperature and diurnal activity patterns in the platypus (Ornithorhynchus anatinus) during winter. Aust J Zool 40(2):135–142

    Article  Google Scholar 

  • Grigg GC, Beard LA, Barnes JA, Perry LI, Fry GJ, Hawkins M (2003) Body temperature in captive long-beaked echidnas (Zaglossus bartoni). Comp Biochem Physiol A Mol Integr Physiol 136(4):911–916

    Article  Google Scholar 

  • Hahn GL (1999) Dynamic responses of cattle to thermal heat loads. J Anim Sci 77(2):10–20. https://doi.org/10.2527/1997.77suppl_210x

    Article  CAS  Google Scholar 

  • Halse SA, Rose RW (1988) Variation in the basal body temperature of the common brushtail possum (Trichosurus vulpecula) in Tasmania. Mammalia 52(2):225–232. https://doi.org/10.1515/mamm.1988.52.2.225

    Article  Google Scholar 

  • Krockenberger A (2003) Meeting the energy demands of reproduction in female koalas, Phascolarctos cinereus: evidence for energetic compensation. J Comp Physiol B 173(6):531–540. https://doi.org/10.1007/s00360-003-0361-9

    Article  CAS  Google Scholar 

  • Krockenberger AK, Edwards W, Kanowski J (2012) The limit to the distribution of a rainforest marsupial folivore is consistent with the thermal intolerance hypothesis. Oecologia 168(4):889–899. https://doi.org/10.1007/s00442-011-2146-2

    Article  Google Scholar 

  • Lunney D, Crowther MS, Wallis I, Foley WJ, Lemon J, Wheeler R, Madani G, Orscheg C, Griffith JE, Krockenberger M, Retamales M, Stalenberg E (2012) Koalas and climate change: a case study on the Liverpool Plains, north-west New South Wales. In: Lunney D, Hutchings PA (eds) Wildlife & climate change: towards robust conservation strategies for Australian fauna. Royal Zoological Society of New South Wales, Mosman, pp 150–168

    Chapter  Google Scholar 

  • Martin RW, Handasyde KA, Krockenberger A (2008) Koala. In: Van Dyck S, Strahan R (eds) The mammals of Australia, 3rd edn. Reed New Holland, Sydney, pp 197–201

    Google Scholar 

  • McAlpine C, Lunney D, Melzer A, Menkhorst P, Phillips S, Phalen D, Ellis W, Foley W, Baxter G, de Villiers D, Kavanagh R, Adams-Hosking C, Todd C, Whisson D, Molsher R, Walter M, Lawler I, Close R (2015) Conserving koalas: a review of the contrasting regional trends, outlooks and policy challenges. Biol Conserv 192:226–236. https://doi.org/10.1016/j.biocon.2015.09.020

    Article  Google Scholar 

  • McCarron H, Buffenstein R, Fanning F, Dawson T (2001) Free-ranging heart rate, body temperature and energy metabolism in eastern grey kangaroos (Macropus giganteus) and red kangaroos (Macropus rufus) in the arid regions of South East Australia. J Comp Physiol B 171(5):401–411. https://doi.org/10.1007/s003600100189

    Article  CAS  Google Scholar 

  • Nagy KA, Martin RW (1985) Field metabolic rate, water flux, food consumption and time budget of koalas, Phascolarctos Cinereus (Marsupialia: Phascolarctidae) in Victoria. Aust J Zool 33(5):655–665. https://doi.org/10.1071/ZO9850655

    Article  Google Scholar 

  • Radford SL, McKee J, Goldingay RL, Kavanagh RP (2006) The protocols for koala research using radio-collars: a review based on its application in a tall coastal forest in New South Wales and the implications for future research. Austr Mammal 28(2):187–200

    Article  Google Scholar 

  • Refinetti R (1999a) Relationship between the daily rhythms of locomotor activity and body temperature in eight mammalian species. Am J Phys Regul Integr Comp Phys 277(5):R1493–R1500. https://doi.org/10.1152/ajpregu.1999.277.5.R1493

    Article  CAS  Google Scholar 

  • Refinetti R (1999b) Amplitude of the daily rhythm of body temperature in eleven mammalian species. J Therm Biol 24(5):477–481

    Article  Google Scholar 

  • Refinetti R, Menaker M (1992) The circadian rhythm of body temperature. Physiol Behav 51(3):613–637

    Article  CAS  Google Scholar 

  • Riek A, Geiser F (2014) Heterothermy in pouched mammals–a review. J Zool 292(2):74–85

    Article  Google Scholar 

  • Robinson KW (1954) Heat tolerances of Australian monotremes and marsupials. Aust J Biol Sci 7(3):348–360. https://doi.org/10.1071/BI9540348

    Article  CAS  Google Scholar 

  • Schmidt-Nielsen K, Crawford EC Jr, Newsome AE, Rawson KS, Hammel HT (1967) Metabolic rate of camels: effect of body temperature and dehydration. Am J Phys 212:341–346

    Article  CAS  Google Scholar 

  • Seabrook L, McAlpine C, Baxter G, Rhodes J, Bradley A, Lunney D (2011) Drought-driven change in wildlife distribution and numbers: a case study of koalas in south west Queensland. Wildl Res 38(6):509–524. https://doi.org/10.1071/WR11064

    Article  Google Scholar 

  • Song X, Geiser F (1997) Daily torpor and energy expenditure in Sminthopsis macroura: interactions between food and water availability and temperature. Physiol Zool 70(3):331–337. https://doi.org/10.1086/639610

    Article  CAS  Google Scholar 

  • Stawski C, Rojas AD (2016) Thermal physiology of a reproductive female marsupial, Antechinus flavipes. Mammal Res 61(4):417–421. https://doi.org/10.1007/s13364-016-0287-8

    Article  Google Scholar 

  • Sutherland A (1897) The temperatures of reptiles, monotremes and marsupials. Proc R Soc Victoria 9:57–67

    Google Scholar 

  • Turbill C, Law BS, Geiser F (2003) Summer torpor in a free-ranging bat from subtropical Australia. J Therm Biol 28(3):223–226

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Peter Brice for his invaluable advice and insight into thermal biology. The authors are grateful to Leonie and John at the Hollow Log Country Retreat for allowing us to use their facilities for our research and turning their common room into our field surgery. The authors would also like to thank Samantha Spicer, the veterinary nurse who kindly assisted Dr. Vere Nicolson with surgical procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Adam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 46.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, D., Johnston, S.D., Beard, L. et al. Body temperature of free-ranging koalas (Phascolarctos cinereus) in south-east Queensland. Int J Biometeorol 64, 1305–1318 (2020). https://doi.org/10.1007/s00484-020-01907-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-01907-y

Keywords

Navigation