Skip to main content
Log in

TRAF4 knockdown triggers synergistic lethality with simultaneous PARP1 inhibition in endometrial cancer

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Endometrial cancer (EC) is one of the most common cancers among females worldwide. Advanced stage patients of EC have poor prognosis. Inevitable side effects and treatment tolerance of chemotherapy for EC remain to be addressed. Our results in this study showed that EC cells with higher tumor necrosis factor receptor-associated factor 4 (TRAF4) expression have lower sensitivity to poly ADP-ribose polymerase 1 (PARP1) inhibitors. Upon TRAF4 knockdown, the colony numbers of EC cells were markedly down-regulated, and the markers of DNA double-strand breakage were significantly up-regulated after the treatment of olaparib, a PARP1 inhibitor. TRAF4 knockdown reduced the phosphorylation of protein kinase B (Akt), promoted DNA double-strand breakage, and decreased levels of DNA repair related proteins, including phosphorylated-DNA-dependent protein kinase (p-DNA-PK) and RAD51 recombinase (RAD51). In addition, TRAF4′s effect on the sensitivity of EC cells to olaparib was further found to be mainly mediated by Akt phosphorylation. Moreover, in vivo results showed that TRAF4 knockdown enhanced the sensitivity of EC to PARP1 inhibitors using a mouse xenograft model. Collectively, our data suggest that combined application of TRAF4 knockdown and PARP1 inhibition can be used as a promising strategy for synthetic lethality in EC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. Endometrial cancer. Lancet. 2005;366(9484):491–505. https://doi.org/10.1016/S0140-6736(05)67063-8.

    Article  PubMed  Google Scholar 

  2. Kaban A, Erdem B, Kaban I, Numanoglu C. Lymph node metastasis in early stage endometrial cancer. Eur J Gynaecol Oncol. 2018;39(3):415–21.

    Google Scholar 

  3. Braun MM, Overbeek-Wager EA, Grumbo RJ. Diagnosis and management of endometrial cancer. Am Fam Physician. 2016;93(6):468–74.

    PubMed  Google Scholar 

  4. Lee YC, Lheureux S, Oza AM. Treatment strategies for endometrial cancer: current practice and perspective. Curr Opin Obstet Gynecol. 2017;29(1):47–58. https://doi.org/10.1097/GCO.0000000000000338.

    Article  PubMed  Google Scholar 

  5. Basho RK, Gilcrease M, Murthy RK, Helgason T, Karp DD, Meric-Bernstam F, et al. Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer: evidence from a phase 1 trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab. JAMA Oncol. 2017;3(4):509–15. https://doi.org/10.1001/jamaoncol.2016.5281.

    Article  PubMed  Google Scholar 

  6. Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene. 2001;20(44):6482–91. https://doi.org/10.1038/sj.onc.1204788.

    Article  CAS  PubMed  Google Scholar 

  7. Kedinger V, Rio MC. TRAF4, the unique family member. Adv Exp Med Biol. 2007;597:60–71. https://doi.org/10.1007/978-0-387-70630-6_5.

    Article  PubMed  Google Scholar 

  8. Shiels H, Li X, Schumacker PT, Maltepe E, Padrid PA, Sperling A, et al. TRAF4 deficiency leads to tracheal malformation with resulting alterations in air flow to the lungs. Am J Pathol. 2000;157(2):679–88. https://doi.org/10.1016/S0002-9440(10)64578-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Regnier CH, Masson R, Kedinger V, Textoris J, Stoll I, Chenard MP, et al. Impaired neural tube closure, axial skeleton malformations, and tracheal ring disruption in TRAF4-deficient mice. Proc Natl Acad Sci USA. 2002;99(8):5585–90. https://doi.org/10.1073/pnas.052124799.

    Article  CAS  PubMed  Google Scholar 

  10. Li W, Peng C, Lee MH, Lim D, Zhu F, Fu Y, et al. TRAF4 is a critical molecule for Akt activation in lung cancer. Can Res. 2013;73(23):6938–50. https://doi.org/10.1158/0008-5472.Can-13-0913.

    Article  CAS  Google Scholar 

  11. Singh R, Karri D, Shen H, Shao JY, Dasgupta S, Huang SX, et al. TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis. J Clin Invest. 2018;128(7):3129–43. https://doi.org/10.1172/Jci96060.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhu L, Zhang S, Huan X, Mei Y, Yang H. Down-regulation of TRAF4 targeting RSK4 inhibits proliferation, invasion and metastasis in breast cancer xenografts. Biochem Biophys Res Commun. 2018;500(3):810–6. https://doi.org/10.1016/j.bbrc.2018.04.164.

    Article  CAS  PubMed  Google Scholar 

  13. Yang K, Wang F, Han JJ. TRAF4 promotes the growth and invasion of colon cancer through the Wnt/beta-catenin pathway. Int J Clin Exp Pathol. 2015;8(2):1419–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yao W, Wang X, Cai Q, Gao S, Wang J, Zhang P. TRAF4 enhances osteosarcoma cell proliferation and invasion by Akt signaling pathway. Oncol Res. 2014;22(1):21–8. https://doi.org/10.3727/096504014X14077751730351.

    Article  PubMed  Google Scholar 

  15. Xie PM, Wang XL, Kong M, Bai XY, Jiang T. TRAF4 promotes endometrial cancer cell growth and migration by activation of PI3K/AKT/Oct4 signaling. Exp Mol Pathol. 2019;108:9–16. https://doi.org/10.1016/j.yexmp.2019.03.003.

    Article  CAS  PubMed  Google Scholar 

  16. Herceg Z, Wang ZQ. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res. 2001;477(1–2):97–110. https://doi.org/10.1016/S0027-5107(01)00111-7.

    Article  CAS  PubMed  Google Scholar 

  17. Ratnam K, Low JA. Current development of clinical inhibitors of poly (ADP-ribose) polymerase in oncology. Clin Cancer Res. 2007;13(5):1383–8. https://doi.org/10.1158/1078-0432.Ccr-06-2260.

    Article  CAS  PubMed  Google Scholar 

  18. Michels J, Vitale I, Galluzzi L, Adam J, Olaussen KA, Kepp O, et al. Cisplatin resistance associated with PARP hyperactivation. Can Res. 2013;73(7):2271–80. https://doi.org/10.1158/0008-5472.Can-12-3000.

    Article  CAS  Google Scholar 

  19. Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152–8. https://doi.org/10.1126/science.aam7344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ali R, Al-Kawaz A, Toss MS, Green AR, Miligy IM, Mesquita KA, et al. Targeting PARP1 in XRCC1-deficient sporadic invasive breast cancer or preinvasive ductal carcinoma in situ induces synthetic lethality and chemoprevention. Can Res. 2018;78(24):6818–27. https://doi.org/10.1158/0008-5472.Can-18-0633.

    Article  CAS  Google Scholar 

  21. Bi FF, Li D, Yang Q. Hypomethylation of ETS transcription factor binding sites and upregulation of PARP1 expression in endometrial cancer. Biomed Res Int. 2013. https://doi.org/10.1155/2013/946268.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhu D, Sun C, Qian X. MST1 suppresses viability and promotes apoptosis of glioma cells via upregulating SIRT6 expression. J Integr Neurosci. 2019;18(2):117–26. https://doi.org/10.31083/j.jin.2019.02.122.

    Article  PubMed  Google Scholar 

  23. Kastenmayer RJ, Moore RM, Bright AL, Torres-Cruz R, Elkins WR. Select agent and toxin regulations: beyond the eight edition of the guide for the care and use of laboratory animals. J Am Assoc Lab Anim. 2012;51(3):333–8.

    CAS  Google Scholar 

  24. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501. https://doi.org/10.1038/nrc839.

    Article  CAS  PubMed  Google Scholar 

  25. Liu J, Eckert MA, Harada BT, Liu SM, Lu ZK, Yu KK, et al. m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol. 2018;20(9):1074. https://doi.org/10.1038/s41556-018-0174-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Toulany M, Lee KJ, Fattah KR, Lin YF, Fehrenbacher B, Schaller M, et al. Akt promotes post-irradiation survival of human tumor cells through initiation, progression, and termination of DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Res. 2012;10(7):945–57. https://doi.org/10.1158/1541-7786.Mcr-11-0592.

    Article  CAS  PubMed  Google Scholar 

  27. Mueck K, Rebholz S, Harati MD, Rodemann HP, Toulany M. Akt1 stimulates homologous recombination repair of DNA double-strand breaks in a Rad51-dependent manner. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18112473.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu KR, Wu XL, Zang X, Huang ZJ, Lin ZY, Tan WL, et al. TRAF4 Regulates migration, invasion, and epithelial-mesenchymal transition via PI3K/AKT signaling in hepatocellular carcinoma. Oncol Res. 2017;25(8):1329–40. https://doi.org/10.3727/096504017x14876227286564.

    Article  PubMed  Google Scholar 

  29. Zhang L, Li XR, Yang WL, Jiang XK, Li N. TRAF4 promotes tumorigenesis of breast cancer through activation of Akt. Oncol Rep. 2014;32(3):1312–8. https://doi.org/10.3892/or.2014.3304.

    Article  CAS  PubMed  Google Scholar 

  30. Wang AL, Wang J, Ren HY, Yang F, Sun LL, Diao KX, et al. TRAF4 participates in Wnt/beta-catenin signaling in breast cancer by upregulating beta-catenin and mediating its translocation to the nucleus. Mol Cell Biochem. 2014;395(1–2):211–9. https://doi.org/10.1007/s11010-014-2127-y.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Zhang R, Sui R, Chen Y, Liang H, Shi J, et al. MicroRNA-374a governs aggressive cell behaviors of glioma by targeting prokineticin 2. Technol Cancer Res Treat. 2018;18:1533033818821401.

    Google Scholar 

  32. Liu YJ, Duan NQ, Duan SB. MiR-29a inhibits glioma tumorigenesis through a negative feedback loop of TRAF4/Akt Signaling. Biomed Res Int. 2018. https://doi.org/10.1155/2018/2461363.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen TJ, Gao F, Feng SF, Yang T, Chen MW. MicroRNA-370 inhibits the progression of non-small cell lung cancer by downregulating oncogene TRAF4. Oncol Rep. 2015;34(1):461–8. https://doi.org/10.3892/or.2015.3978.

    Article  CAS  PubMed  Google Scholar 

  34. Meerson A, Yehuda H. Leptin and insulin up-regulate miR-4443 to suppress NCOA1 and TRAF4, and decrease the invasiveness of human colon cancer cells. BMC Cancer. 2016. https://doi.org/10.1186/s12885-016-2938-1.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Qi YC, Zhou YL, Chen XX, Ye L, Zhang QW, Huang FJ, et al. MicroRNA-4443 causes CD4+T cells dysfunction by targeting TNFR-associated factor 4 in Graves' disease. Front Immunol. 2017. https://doi.org/10.3389/fimmu.2017.01440.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang JC, Quan XY, Peng DT, Hu G. Long non-coding RNA DLEU1 promotes cell proliferation of glioblastoma multiforme. Mol Med Rep. 2019;20(2):1873–82. https://doi.org/10.3892/mmr.2019.10428.

    Article  CAS  PubMed  Google Scholar 

  37. Galaal K, Al Moundhri M, Bryant A, Lopes AD, Lawrie TA. Adjuvant chemotherapy for advanced endometrial cancer. Cochrane Database Syst Rev. 2014. https://doi.org/10.1002/14651858.CD010681.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schreiber V, Dantzer F, Ame JC, de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 2006;7(7):517–28. https://doi.org/10.1038/nrm1963.

    Article  CAS  PubMed  Google Scholar 

  39. Weigelt B, Warne PH, Lambros MB, Reis-Filho JS, Downward J. PI3K pathway dependencies in endometrioid endometrial cancer cell lines. Clin Cancer Res. 2013;19(13):3533–44. https://doi.org/10.1158/1078-0432.Ccr-12-3815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Philip CA, Laskov I, Beauchamp MC, Marques M, Amin O, Bitharas J, et al. Inhibition of PI3K-AKT-mTOR pathway sensitizes endometrial cancer cell lines to PARP inhibitors. BMC Cancer. 2017. https://doi.org/10.1186/s12885-017-3639-0.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

LLT and CYZ conceived and designed the experiments, MW analyzed and interpreted the results of the experiments, LJ performed the experiments.

Corresponding author

Correspondence to Chengying Zeng.

Ethics declarations

Conflict of interest

The authors declared that there were no competing interests, and all authors confirmed its accuracy.

Ethics approval and consent to participate

The animal study was approved by the Ethics Committee of The Third Affiliated Hospital of Southern Medical University. Experiments were operated according to the Guidelines for the Care and Use of Laboratory Animals published by the National Institutes of Health.

Patient consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Wang, M., Jiang, L. et al. TRAF4 knockdown triggers synergistic lethality with simultaneous PARP1 inhibition in endometrial cancer. Human Cell 33, 801–809 (2020). https://doi.org/10.1007/s13577-020-00363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00363-5

Keywords

Navigation