Skip to main content
Log in

A calibration disk for the correction of radial errors from chromatic aberration and rotor stretch in the Optima AUC™ analytical ultracentrifuge

  • Methods Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Experiments performed in the analytical ultracentrifuge (AUC) measure sedimentation and diffusion coefficients, as well as the partial concentration of colloidal mixtures of molecules in the solution phase. From this information, their abundance, size, molar mass, density and anisotropy can be determined. The accuracy with which these parameters can be determined depends in part on the accuracy of the radial position recordings and the boundary conditions used in the modeling of the AUC data. The AUC instrument can spin samples at speeds up to 60,000 rpm, generating forces approaching 300,000 g. Forces of this magnitude will stretch the titanium rotors used in the instrument, shifting the boundary conditions required to solve the flow equations used in the modeling of the AUC data. A second source of error is caused by the chromatic aberration resulting from imperfections in the UV–visible absorption optics. Both errors are larger than the optical resolution of currently available instrumentation. Here, we report software routines that correct these errors, aided by a new calibration disk which can be used in place of the counterbalance to provide a calibration reference for each experiment to verify proper operation of the AUC instrument. We describe laboratory methods and software routines in UltraScan that incorporate calibrations and corrections for the rotor stretch and chromatic aberration in order to support Good Manufacturing Practices for AUC data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brookes EH, Demeler B (2006) Genetic Algorithm Optimization for obtaining accurate molecular weight distributions from sedimentation velocity experiments. In: Wandrey C, Cölfen H (eds) Analytical ultracentrifugation VIII, progress in colloid polymer science. Springer, New York

    Google Scholar 

  • Brookes EH, Demeler B (2007) Parsimonious regularization using genetic algorithms applied to the analysis of analytical ultracentrifugation experiments. In: GECCO Proceedings ACM

  • Brookes E, Demeler B (2008) Parallel computational techniques for the analysis of sedimentation velocity experiments in UltraScan. Colloid Polym Sci 286(2):138–148

    Article  Google Scholar 

  • Brookes EH, Cao W, Demeler B (2010) A two-dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape. Eur Biophys J 39:405–414

    Article  Google Scholar 

  • Brookes E, Singh R, Pierce M, Marru S, Demeler B, Rocco M (2013) US-SOMO cluster methods: year one perspective. In: XSEDE '13 Proceedings of the Conference on Extreme Science and Engineering discovery Environment: Gateway to discovery Article No. 65 ACM New York, NY, USA 2013 ISBN: 978-1-4503-2170-9

  • Cao W, Demeler B (2005) Modeling analytical ultracentrifugation experiments with an adaptive space-time finite element solution of the Lamm equation. Biophys J 89(3):1589–1602

    Article  CAS  Google Scholar 

  • Cao W, Demeler B (2008) Modeling analytical ultracentrifugation experiments with an adaptive space-time finite element solution for multi-component reacting systems. Biophys J 95(1):54–65

    Article  CAS  Google Scholar 

  • Carruthers LM, Schirf VR, Demeler B, Hansen JC (2000) Sedimentation velocity analysis of macromolecular assemblies. Method Enzymol Numer Comput Methods 321:66–80

    Article  CAS  Google Scholar 

  • Chu JJ, Steeves CA (2011) Thermal expansion and recrystallization of amorphous Al and Ti: a molecular dynamics study. J Non-Cryst Solids 357(22–23):3765–3773

    Article  CAS  Google Scholar 

  • Demeler B (2010) Methods for the design and analysis of sedimentation velocity and sedimentation equilibrium experiments with proteins. Cur Protoc Prot Sci 7:7–13

    Google Scholar 

  • Demeler B (2019) Measuring molecular interactions in solution using multi-wavelength analytical ultracentrifugation: combining spectral analysis with hydrodynamics Biophysics using physics to explore biological systems. Biochemist 41(2):14–18

    Article  CAS  Google Scholar 

  • Demeler B, Brookes EH (2008) Monte Carlo analysis of sedimentation experiments. Colloid Polym Sci 286:129–137

    Article  CAS  Google Scholar 

  • Demeler B, Gorbet G (2016) Analytical ultracentrifugation data analysis with UltraScan-III. In: Uchiyama S, Stafford WF, Laue T (eds) Analytical ultracentrifugation: instrumentation, software, and applications. Springer, Berlin

    Google Scholar 

  • Demeler B, Brookes E, Wang R, Schirf V, Kim CA (2010) Characterization of reversible associations by sedimentation velocity with ultrascan. Macromol Biosci Macromol Biosci 10(7):775–782

    Article  CAS  Google Scholar 

  • Desai A, Krynitsky J, Pohida TJ, Zhao H, Schuck P (2016) 3D-Printing for analytical ultracentrifugation. PLoS ONE 11(8):e0155201

    Article  Google Scholar 

  • Gorbet GE, Pearson JZ, Demeler AK, Cölfen H, Demeler B (2015) Next-generation AUC: analysis of multiwavelength analytical ultracentrifugation data. Methods Enzymol 562:27–47. https://doi.org/10.1016/bs.mie.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  • Gorbet GE, Mohapatra S, Demeler B (2018) Multi-speed sedimentation velocity implementation in UltraScan-III. Eur Biophys J 47(7):825–835. https://doi.org/10.1007/s00249-018-1297-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu J, Soraiz EH, Johnson CN, Demeler B, Brancaleon L (2019) Novel combinations of experimental and computational analysis tested on the binding of metalloprotoporphyrins to albumin. Int J Biol Macromol 1(134):445–457

    Article  Google Scholar 

  • Johnson CN, Gorbet GE, Ramsower H, Urquidi J, Brancaleon L, Demeler B (2018) Multi-wavelength analytical ultracentrifugation of human serum albumin complexed with porphyrin. Eur Biophys J 115(2):328–340

    Article  Google Scholar 

  • Lamm O (1929) Die Differentialgleichung der Ultrazentrifugierung. Ark Mat Astron Fys 21B:1–4

    Google Scholar 

  • LeBrun T, Schuck P, Wei R, Yoon JS, Dong X, Morgan NY, Fagan J, Zhao H (2018) A radial calibration window for analytical ultracentrifugation. PLoS ONE 13(7):e0201529

    Article  Google Scholar 

  • Liu J, Shire SJ (1999) Analytical ultracentrifugation in the pharmaceutical industry. J Pharm Sci 88(12):1237–1241

    Article  CAS  Google Scholar 

  • Patel TR, Winzor DJ, Scott DJ (2016) Analytical ultracentrifugation: a versatile tool for the characterisation of macromolecular complexes in solution. Methods 95:55–61

    Article  CAS  Google Scholar 

  • Pearson J, Hofstetter M, Dekorsy T, Totzeck M, Cölfen H (2018) Design concepts in absorbance optical systems for analytical ultracentrifugation. Analyst 143(17):4040–4050

    Article  CAS  Google Scholar 

  • Plascencia-Villa G, Demeler B, Whetten RL, Griffith WP, Alvarez M, Black DM, José-Yacamán M (2016) Analytical characterization of size-dependent properties of larger aqueous gold nanoclusters. J Phys Chem C 120(16):8950–8958

    Article  CAS  Google Scholar 

  • Steeves CA, Mercer C, Antinucci E, He MY, Evans AG (2009) Experimental investigation of the thermal properties of low expansion lattices. Int J Mech Mater Des 5(2):195–202

    Article  Google Scholar 

  • Svedberg T, Pedersen K (1940) The ultracentrifuge. Oxford University Press, London

    Google Scholar 

  • von Seggern E (2020) Personal communication. Beckman Coulter R and D, Loveland, Colorado

    Google Scholar 

  • Williams TL, Gorbet GE, Demeler B (2018) Multi-speed sedimentation velocity simulations with UltraScan-III. Eur Biophys J 47(7):815–823. https://doi.org/10.1007/s00249-018-1308-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Pearson JZ, Gorbet GE, Cölfen H, Germann MW, Brinton MA, Demeler B (2017) Spectral and hydrodynamic analysis of west Nile virus RNA-protein interactions by multiwavelength sedimentation velocity in the analytical ultracentrifuge. Anal Chem 89(1):862–870 PMID: 27977168

    Article  CAS  Google Scholar 

  • Zhao H, Ghirlando R, Alfonso C et al (2015) A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation. PLoS ONE 10(5):e0126420

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Foundation for Innovation, the Canada 150 Research Chairs program, the Canada Foundation for Innovation Grant CFI-37589, National Institutes of Health grant 1R01GM120600, NSERC DG-RGPIN-2019-05637, a CIHR foundation grant (FDN 148469), and the Chinook Summer Studentship Award. Special thanks to Denton Fredrickson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borries Demeler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoutjesdyk, M., Henrickson, A., Minors, G. et al. A calibration disk for the correction of radial errors from chromatic aberration and rotor stretch in the Optima AUC™ analytical ultracentrifuge. Eur Biophys J 49, 701–709 (2020). https://doi.org/10.1007/s00249-020-01434-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-020-01434-z

Keywords

Navigation