Skip to main content
Log in

Synergistic effect between flame retardant viscose and nitrogen-containing intrinsic flame-retardant fibers

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A simple but effective method was proposed to promote the flame retardancy of blended fibers based on the synergistic effect between flame retardant fibers. The flame retardant viscose (FRV) is blended with three kinds of nitrogen-containing intrinsic flame-retardant fibers (NIFRFs), respectively. The limiting oxygen index, cone calorimeter test, thermogravimetric analysis coupled with Fourier transform infrared, scanning electron microscopy, X-ray photoelectron spectroscopy, and the laser Raman spectroscopy are used to have a comprehensive investigation on the flame retardant properties and mechanism of blended fibers. Results show that there is an obvious synergistic effect between FRV and NIFRFs. However, it is found that the improvements in flame retardancy of fiber blends have no direct relationship with the nitrogen content of NIFRFs. The difference of thermal degradation temperature (Tdmax) has more influence on the synergistic flame retardancy of the two fibers. The closer the Tdmax of FRV and NIFRF is, the more obvious the synergistic effect between blended fibers is. The residual char of blended fibers are all more compact and integrated than those of pure fibers. The FRV/poly(m-phenylene isophthalamide) (PMIA) 20/80 has the highest LOI of 47.5%, showing the best flame retardancy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Basyigit ZO, Kut D (2018) Formaldehyde-free and halogen-free flame retardant finishing on cotton fabric. Tekstİl Ve Konfeksİyon 28(4):287–293

    Google Scholar 

  • Bowman DMJS, Balch J, Artaxo P et al (2011) The human dimension of fire regimes on Earth. J Biogeogr 38(12):2223–2236

    Article  Google Scholar 

  • Brebu M, Tamminen T, Spiridon I (2013) Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS. J Anal Appl Pyrol 104:531–539

    Article  CAS  Google Scholar 

  • Carosio F, Fontaine G, Alonge J et al (2015) Starch-based layer by layer assembly: efficient and sustainable approach to cotton fire protection. ACS Appl Mater Interfaces 7(22):12158–12167

    Article  CAS  Google Scholar 

  • Carosio F, Ghanadpour M, Alongi J et al (2018) Layer-by-layer-assembled chitosan/phosphorylated cellulose nanofibrils as a bio-based and flame protecting nano-exoskeleton on PU foams. Carbohydr Polym 202:479–487

    Article  CAS  Google Scholar 

  • Carrillo F, Colom X, Sunol JJ et al (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40(9):2229–2234

    Article  CAS  Google Scholar 

  • Chen WL, Fu XW, Ge WB et al (2014) Microencapsulation of bisneopentyl glycol dithiopyrophosphate and its flame retardant effect on polyvinyl alcohol. Polym Degrad Stab 102:81–87

    Article  Google Scholar 

  • Friedman M, Thorsen WJ (1976) Flame-resistant wool-cotton and wool-cotton-polyester blends. Text Res J 46(1):70–72

    Article  CAS  Google Scholar 

  • Gillo M, Iannelli P, Laurienzo P et al (2002) Alkoxy-substituted poly(p-phenylene 1,3,4-oxadiazole)s: synthesis, chemical characterization, and electro-optical properties. Chem Mater 14(4):1539–1547

    Article  CAS  Google Scholar 

  • Guo DL, Yuan HY, Yin XL et al (2014) Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis. Biores Technol 152:147–153

    Article  CAS  Google Scholar 

  • Horacek H, Grabner R (1996) Advantages of flame retardants based on nitrogen compounds. Polym Degrad Stab 54(2–3):205–215

    Article  CAS  Google Scholar 

  • Hribernik S, Smole MS, Kleinschek KS et al (2007) Flame retardant activity of SiO2-coated regenerated cellulose fibres. Polym Degrad Stab 92(11):1957–1965

    Article  CAS  Google Scholar 

  • Koutu BB, Sharma RK (1996) Synthesis of a flame-retardant dope additive dithiopyrophosphate and its effect on viscose rayon fibres. Indian J Fibre Text Res 21(2):140–142

    CAS  Google Scholar 

  • Li X, Liu P, Gao MQ et al (2018) Influences of sodium species with different occurrence modes on the thermal behaviors and gas evolution during pyrolysis of a sodium-rich Zhundong subbituminous coal. J Energy Inst 91(5):695–703

    Article  CAS  Google Scholar 

  • Li J, Shan YL, Yin SN et al (2019) Nonparametric multivariate analysis of variance for affecting factors on the extent of forest fire damage in Jilin Province, China. J For Res 30(6):2185–2197

    Article  Google Scholar 

  • Lin Y, Liao YF, Yu ZS et al (2017) A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS. Energy Convers Manag 151:190–198

    Article  CAS  Google Scholar 

  • Liu Y, Li ZF, Wang JS et al (2015) Thermal degradation and pyrolysis behavior of aluminum alginate investigated by TG-FTIR-MS and Py-GC-MS. Polym Degrad Stab 118:59–68

    Article  CAS  Google Scholar 

  • Lohr C, Beck B, Henning F et al (2018) Process comparison on the microstructure and mechanical properties of fiber-reinforced polyphenylene sulfide using MuCell technology. J Reinf Plast Compos 37(15):1020–1034

    Article  CAS  Google Scholar 

  • Long CG, Wang XY (2004) Wear and mechanical properties of Ekonol/G/MoS2/PEEK composites. J Mater Sci 39(4):1499–1501

    Article  CAS  Google Scholar 

  • Mormile P, Petti L, Gillo M et al (2002) Optical properties of a novel alkoxy-substituted poly(p-phenylene 1,3,4-oxadiazoles) for electro-optical devices. Mater Chem Phys 77(3):945–951

    Article  Google Scholar 

  • Patel P, Hull TR, Lyon RE et al (2011) Investigation of the thermal decomposition and flammability of PEEK and its carbon and glass–fibre composites. Polym Degrad Stab 96(1):12–22

    Article  CAS  Google Scholar 

  • Schartel B, Hull TR (2007) Development of fire-retarded materials—interpretation of cone calorimeter data. Fire Mater 31(5):327–354

    Article  CAS  Google Scholar 

  • Seddon H, Hall M, Horrocks AR (1996) The flame retardancy of lyocell fibres. Polym Degrad Stab 54(2):401–402

    Article  CAS  Google Scholar 

  • Shariatinia Z, Javeri N, Shekarriz S (2015) Flame retardant cotton fibers produced using novel synthesized halogen-free phosphoramide nanoparticles. Carbohydr Polym 118:183–198

    Article  CAS  Google Scholar 

  • Shen DK, Gu S, Luo KH et al (2010) The pyrolytic degradation of wood-derived lignin from pulping process. Biores Technol 101(15):6136–6146

    Article  CAS  Google Scholar 

  • Villar-Rodil S, Paredes JI, Martinez-Alonso A et al (2002) Combining thermal analysis with other techniques to monitor the decomposition of poly(m-phenylene isophthalamide. J Therm Anal Calorim 70:37–43

    Article  CAS  Google Scholar 

  • Wang X, Li QS, Di YB et al (2012) Preparation and properties of flame-retardant viscose fiber containing phosphazene derivative. Fibers Polym 13(6):718–723

    Article  CAS  Google Scholar 

  • Weil ED, Levchik SV (2008) Flame retardants in commercial use or development for textiles. J Fire Sci 26(3):243–281

    Article  CAS  Google Scholar 

  • Xu Y, Wang SH, Li ZT et al (2013) Polyimide fibers prepared by dry-spinning process: imidization degree and mechanical properties. J Mater Sci 48(22):7863–7868

    Article  CAS  Google Scholar 

  • Xu WZ, Xu BL, Li AJ et al (2016) Flame retardancy and smoke suppression of MgAl layered double hydroxides containing p and si in polyurethane elastomer. Ind Eng Chem Res 55(42):11175–11185

    Article  CAS  Google Scholar 

  • Xu WZ, Wang GS, Liu TC et al (2018) Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin. RSC Adv 8(5):2575–2585

    Article  CAS  Google Scholar 

  • Yang S, Kim JP (2007) Flame-retardant polyesters. II. Polyester polymers. J Appl Polym Sci 106(2):1274–1280

    Article  CAS  Google Scholar 

  • Zhang XS, Shi MW (2019) Flame retardant vinylon/poly(m-phenylene isophthalamide) blended fibers with synergistic flame retardancy for advanced fireproof textiles. J Hazard Mater 365:9–15

    Article  CAS  Google Scholar 

  • Zhang CX, Ren J, Ma YM et al (2018) Preparation and adsorption properties of amphoteric viscose fiber. Iran Polym J 27(9):635–644

    Article  CAS  Google Scholar 

  • Zhao L, Huang ZP, Xiong SW et al (2019) Polyphenylene sulfide composite laminate from flexible nonwovens and carbon fiber fabrics prepared by thermal lamination and thermal treatment. Polym Bull 76(11):5633–5648

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was generously supported by the National Key Research and Development Program of China (Project No. 2017YFB0309000), the Sichuan Science and Technology Planning Project (Project No. 2019ZDZX0016), and the Fundamental Research Funds for Central Universities. The authors gratefully acknowledge the State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University and the Analytical & Testing Centre of Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengjin Jiang.

Ethics declarations

Conflict of interest

This is the original work that should be submitted to Cellulose. The author(s) declared no conflicts of competing interests with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1564 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Wang, F., Liang, J. et al. Synergistic effect between flame retardant viscose and nitrogen-containing intrinsic flame-retardant fibers. Cellulose 27, 6083–6092 (2020). https://doi.org/10.1007/s10570-020-03203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03203-9

Keywords

Navigation