Skip to main content
Log in

A Modeling Method of Continuous Fiber Paths for Additive Manufacturing (3D Printing) of Variable Stiffness Composite Structures

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A modeling method of variable stiffness composite structures (VSCSs) with curved fiber trajectories has been developed. The fiber trajectories are aligned in the direction of maximum principal stress, and the VSCSs with variable fiber orientation and the variable fiber volume fraction are modeled on the basis of these trajectories. A material property degradation method taking into account the heterogeneity of material properties of the VSCSs is used to predict the ultimate load and model the progressive failure for a composite plate with a hole under tensile loading. It is shown that a transition from rectilinear reinforcement to curvilinear results in an increase in the ultimate load of the plate. The opportunity for simulation of a continuous fiber path for the VSCSs is presented, and the path could be used to produce the VSCSs by additive manufacturing (3D printing).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ghiasi, H., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials Part I: Constant stiffness design. Compos. Struct. 90, 1–11 (2009)

    Google Scholar 

  2. Pedersen, P., Tobiesen, L., Jensen, S.H.: Shapes of orthotropic plates for minimum energy concentration. Mech. Struct. Mach. 20, 499–514 (1992)

    Google Scholar 

  3. Heller, M., Kaye, R., Rose, L.R.F.: A gradientless finite element procedure for shape optimization. J. Strain Anal. Eng. 34, 323–336 (1999)

    Google Scholar 

  4. Pedersen, P.: On optimal shapes in materials and structures. Struct. Multidiscip. Optim. 19, 169–182 (2000)

    Google Scholar 

  5. Gliesche, K., Hübner, T., Orawetz, H.: Application of the tailored fibre placement (TFP) process for a local reinforcement on an “open-hole” tension plate from carbon/epoxy laminates. Compos. Sci. Technol. 63, 81–88 (2003)

    Google Scholar 

  6. Zhu, Y., Qin, Y., Qi, S., Xu, H., Liu, D., Yan, C.: Variable angle tow reinforcement design for locally reinforcing an open-hole composite plate. Compos. Struct. 202, 162–169 (2018)

    Google Scholar 

  7. Katagiri, K., Honda, S., Minami, S., Tomizawa, Y., Kimu, D., Yamaguchi, S., Ehiro, T., Ozaki, T., Sonomura, H., Kawakita, S., Takemura, M., Yoshioka, Y., Sasaki, K.: CFRP manufacturing method by using electro-activated deposition and the effect of reinforcement with carbon fiber circumferentially around the hole. Compos. Struct. 207, 658–664 (2019)

    Google Scholar 

  8. Khan, S., Fayazbakhsh, K., Fawaz, Z., Nik, M.A.: Curvilinear variable stiffness 3D printing technology for improved open-hole tensile strength. Additive Manufacturing 24, 378–385 (2018)

    CAS  Google Scholar 

  9. Hyer, M.W., Charette, R.F.: Use of curvilinear fiber format in composite structure design. AIAA J. 29, 1011–1015 (1991)

    Google Scholar 

  10. Malakhov, A.V., Polilov, A.N.: Design of composite structures reinforced curvilinear fibres using FEM. Compos. Part A-Appl. S. 87, 23–28 (2016)

    Google Scholar 

  11. Zhang, H., Yang, D., Sheng, Y.: Performance-driven 3D printing of continuous curved carbon fibre reinforced polymer composites: A preliminary numerical study. Compos. Part B-Eng. 151, 256–264 (2018)

    CAS  Google Scholar 

  12. Mattheck, C.: Design in nature: learning from trees. Springer, Berlin (1998)

  13. Zhu, Y., Liu, J., Liu, D., Xu, H., Yan, C., Huang, B., Hui, D.: Fiber path optimization based on a family of curves in composite laminate with a center hole. Compos. Part B-Eng. 111, 91–102 (2017)

    CAS  Google Scholar 

  14. Tosh, M.W., Kelly, D.W.: On the design, manufacture and testing of trajectorial fibre steering for carbon fibre composite laminates. Compos. Part A-Appl. S. 31, 1047–1060 (2000)

    Google Scholar 

  15. Gürdal, Z., Olmedo, R.: In-plane response of laminates with spatially varying fiber orientations: variable stiffness concept. AIAA J. 31, 751–758 (1993)

    Google Scholar 

  16. Lemaire, E., Zein, S., Bruyneel, M.: Optimization of composite structures with curved fiber trajectories. Compos. Struct. 131, 895–904 (2015)

    Google Scholar 

  17. Cho, H.K., Rowlands, R.E.: Optimizing fiber direction in perforated orthotropic media to reduce stress concentration. J. Compos. Mater. 43, 1177–1198 (2009)

    Google Scholar 

  18. Pedersen, P.: Examples of density, orientation, and shape-optimal 2D-design for stiffness and/or strength with orthotropic materials. Struct. Multidiscip. O. 26, 37–49 (2004)

    Google Scholar 

  19. Stodieck, O., Cooper, J.E., Weaver, P.M., Kealy, P.: Optimization of tow-steered composite wing laminates for aeroelastic tailoring. AIAA J. 53, 2203–2215 (2015)

    Google Scholar 

  20. Stodieck, O., Cooper, J.E., Weaver, P.M., Kealy, P.: Aeroelastic tailoring of a representative wing box using tow-steered composites. AIAA J. 55, 1425–1439 (2017)

    Google Scholar 

  21. Honda, S., Narita, Y.: Vibration design of laminated fibrous composite plates with local anisotropy induced by short fibers and curvilinear fibers. Compos. Struct. 93, 902–910 (2011)

    Google Scholar 

  22. Tabakov, P.Y., Walker, M.: A technique for stiffness improvement by optimization of fiber steering in composite plates. Appl. Compos. Mater. 17, 453–461 (2010)

    Google Scholar 

  23. Bittrich, L., Spickenheuer, A., Almeida, J.H.S., Müller, S., Kroll, L., Heinrich, G.: Optimizing variable-axial fiber-reinforced composite laminates: the direct fiber path optimization concept. Math. Probl. Eng. Article ID 8260563, 11 (2019) pages

  24. Huang, J., Haftka, R.T.: Optimization of fiber orientations near a hole for increased load-carrying capacity of composite laminates. Struct. Multidiscip. O. 30, 335–341 (2005)

    Google Scholar 

  25. Honda, S., Igarashi, T., Narita, Y.: Multi-objective optimization of curvilinear fiber shapes for laminated composite plates by using NSGA-II. Compos. Part B-Eng. 45, 1071–1078 (2013)

    Google Scholar 

  26. Hyer, M.W., Lee, H.H.: The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes. Compos. Struct. 18, 239–261 (1991)

    Google Scholar 

  27. Setoodeh, S., Abdalla, M.M., IJsselmuiden, S.T., Gürdal, Z.: Design of variable-stiffness composite panels for maximum buckling load. Compos. Struct. 87, 109–117 (2009)

    Google Scholar 

  28. Madeo, A., Groh, R.M.J., Zucco, G., Weaver, P.M., Zagari, G., Zinno, R.: Post-buckling analysis of variable-angle tow composite plates using Koiter’s approach and the finite element method. Thin. Wall. Struct. 110, 1–13 (2017)

    Google Scholar 

  29. Wang, P., Huang, X., Wang, Z., Geng, X., Wang, Y.: Buckling and post-buckling behaviors of a variable stiffness composite laminated wing box structure. Appl. Compos. Mater. 25, 449–467 (2018)

    Google Scholar 

  30. Koricho, E.G., Khomenko, A., Fristedt, T., Haq, M.: Innovative tailored fiber placement technique for enhanced damage resistance in notched composite laminate. Compos. Struct. 120, 378–385 (2015)

    Google Scholar 

  31. Lopes, C.S., Gürdal, Z., Camanho, P.P.: Variable-stiffness composite panels: Buckling and first-ply failure improvements over straight-fibre laminates. Comput. Struct. 86, 897–907 (2008)

    Google Scholar 

  32. Marouene, A., Boukhili, R., Chen, J., Yousefpour, A.: Buckling behavior of variable-stiffness composite laminates manufactured by the tow-drop method. Compos. Struct. 139, 243–253 (2016)

    Google Scholar 

  33. Marouene, A., Boukhili, R., Chen, J., Yousefpour, A.: Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite laminates – A numerical and experimental study. Compos. Struct. 140, 556–566 (2016)

    Google Scholar 

  34. Jasso, A.J.M., Goodsell, J.E., Ritchey, A.J., Pipes, R.B., Koslowski, M.: A parametric study of fiber volume fraction distribution on the failure initiation location in open hole off-axis tensile specimen. Compos. Sci. Technol. 71, 1819–1825 (2011)

    Google Scholar 

  35. HexTow, I.M.7 Carbon fiber product data sheet, Hexcel Composites (2018)

  36. HexPly 8552 Epoxy matrix product data sheet, Hexcel Composites (2016)

  37. HexPly 8552 Product Data, Hexcel Composites (2016)

  38. Marlett, K.: Hexcel 8552 IM7 unidirectional prepreg 190 gsm & 35%RC qualification material property data report. National institute for aviation research, Wichita State University, CAM-RP-2009-015, Revision A (2011)

  39. Almeida, J.B.D.: Analytical and experimental study on the evolution of residual stresses in composite materials. MSD Thesis, University of Porto, pp. 110 (2005)

  40. Davila, C.G., Camanho, P.P., Rose, C.A.: Failure criteria for FRP laminates. J. Compos. Mater. 39, 323–345 (2005)

    CAS  Google Scholar 

  41. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62, 1633–1662 (2002)

    Google Scholar 

  42. Malakhov, A.V., Polilov, A.N.: Construction of trajectories of the fibers which bypass a hole and their comparison with the structure of wood in the vicinity of a knot. J. Mach. Manuf. Reliab. 42, 306–311 (2013)

    Google Scholar 

  43. Jones, R.M.: Mechanics of composite materials. Taylor & Francis, Abingdon (1999)

  44. Chang, F.-K., Chang, K.-Y.: A progressive damage model for laminated composites containing stress concentrations. J. Compos. Mater. 21, 834–855 (1987)

    CAS  Google Scholar 

  45. Tan, S.C.: A progressive failure model for composite laminates containing openings. J. Compos. Mater. 25, 556–577 (1991)

    Google Scholar 

  46. Tan, S.C., Perez, J.: Progressive failure of laminated composites with a hole under compressive loading. J. Reinf. Plast. Comp. 12, 1043–1057 (1993)

    Google Scholar 

  47. McCarthy, C.T., McCarthy, M.A., Lawlor, V.P.: Progressive damage analysis of multi-bolt composite joints with variable bolt–hole clearances. Compos. Part B-Eng. 36, 290–305 (2005)

    Google Scholar 

  48. Hallett, S.R., Green, B.G., Jiang, W.G., Wisnom, M.R.: An experimental and numerical investigation into the damage mechanisms in notched composites. Compos. Part A-Appl. S. 40, 613–624 (2009)

    Google Scholar 

  49. Hoos, K., Iarve, E.V., Braginsky, M., Zhou, E., Mollenhauer, D.H.: Static strength prediction in laminated composites by using discrete damage modeling. J. Compos. Mater. 51, 1473–1492 (2017)

    Google Scholar 

  50. Guo, Z., Zhu, H., Li, Y., Han, X., Wang, Z.: Simulating initial and progressive failure of open-hole composite laminates under tension. Appl. Compos. Mater. 23, 1209–1218 (2016)

    Google Scholar 

  51. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Google Scholar 

  52. Camanho, P.P., Matthews, F.L.: A progressive damage model for mechanically fastened joints in composite laminates. J. Compos. Mater. 33, 2248–2280 (1999)

    Google Scholar 

  53. Tserpes, K.I., Labeas, G., Papanikos, P., Kermanidis, Th: Strength prediction of bolted joints in graphite/epoxy composite laminates. Compos. Part B-Eng. 33, 521–529 (2002)

    Google Scholar 

  54. Zhao, Y.: Stress and strength of laminated composite containing a circular hole. LSU Historical Dissertations and Theses, 6880, Louisiana State University, pp. 144 (1998)

  55. Scotchply type: 1002. https://www.grtgenesis.com/wp-content/uploads/2017/05/high-pressure-laminates-651328.pdf

  56. Mittelman, A., Roman, I.: Tensile properties of real unidirectional Kevlar/epoxy composites. Composites 21, 63–69 (1990)

    CAS  Google Scholar 

  57. Karam, G.N.: Effect of fibre volume on tensile properties of real unidirectional fibre-reinforced composites. Composites 22, 84–88 (1991)

    CAS  Google Scholar 

  58. Rangaraj, S.S., Bhaduri, S.B.: A modified rule-of-mixtures for prediction of tensile strengths of unidirectional fibre-reinforced composite materials. J. Mater. Sci. 29, 2795–2800 (1994)

    CAS  Google Scholar 

  59. Lee, C., Hwang, W.: Modified rule of mixtures for prediction of tensile strength of unidirectional fiber-reinforced composites. J. Mater. Sci. Lett. 17, 1601–1603 (1998)

    CAS  Google Scholar 

  60. Chan, M., Piggott, M.R.: Transverse tests for fibre-polymer adhesion evaluation. Compos. Interface. 6, 543–556 (1999)

    CAS  Google Scholar 

  61. Sathishkumar, T.P., Navaneethakrishnan, P., Shankar, S., Rajasekar, R.: Mechanical properties and water absorption of snake grass longitudinal fiber reinforced isophthalic polyester composites. J. Reinf. Plast. Comp. 32, 1211–1223 (2013)

    Google Scholar 

  62. Collings, T.A.: Transverse compressive behaviour of unidirectional carbon fibre reinforced plastics. Composites 5, 108–116 (1974)

    Google Scholar 

  63. Bazhenov, S.L., Kozey, V.V.: Transversal compression fracture of unidirectional fibre-reinforced plastics. J. Mater. Sci. 26, 2677–2684 (1991)

    CAS  Google Scholar 

  64. Purslow, D.: The shear properties of unidirectional carbon fibre reinforced plastics and their experimental determination. ARC-CP-1381 (1977)

  65. Tian, X., Liu, T., Yang, C., Wang, Q., Li, D.: Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A-Appl. S. 88, 198–205 (2016)

    CAS  Google Scholar 

  66. Ning, F., Cong, W., Qiu, J., Wei, J., Wang, S.: Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B-Eng. 80, 369–378 (2015)

    CAS  Google Scholar 

  67. Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.K., Asahara, H., Horiguchi, K., Nakamura, T., Todoroki, A., Hirano, Y.: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 6, 23058 (2016)

    Google Scholar 

  68. Wang, Q., Tian, X., Huang, L., Li, D., Malakhov, A.V., Polilov, A.N.: Programmable morphing composites with embedded continuous fibers by 4D printing. Mater. Design. 155, 404–413 (2018)

    Google Scholar 

  69. Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D.: 3D printing of polymer matrix composites: A review and prospective. Compos. Part B-Eng. 110, 442–458 (2017)

    CAS  Google Scholar 

  70. Liu, T., Tian, X., Zhang, M., Abliz, D., Li, D., Ziegmann, G.: Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites. Compos. Part A-Appl. S. 114, 368–376 (2018)

    CAS  Google Scholar 

  71. Markforged company. https://markforged.com

  72. Anisoprint company. http://anisoprint.com

  73. Shaanxi Fibertech Technology Development Co., Ltd. http://www.fibertech3d.com

  74. Dataset. https://drive.google.com/drive/folders/13yILKmBR5V7lqZRTEGhgpPHUUpe-S2bW

  75. Justo, J., Távara, L., García-Guzmán, L., París, F.: Characterization of 3D printed long fibre reinforced composites. Compos. Struct. 185, 537–548 (2018)

    Google Scholar 

  76. Pyl, L., Kalteremidou, K.-A., Hemelrijck, D.V.: Exploration of the design freedom of 3D printed continuous fibre-reinforced polymers in open-hole tensile strength tests. Compos. Sci. Technol. 171, 135–151 (2019)

    CAS  Google Scholar 

  77. Hou, Z., Tian, X., Zheng, Z., Zhang, J., Zhe, L., Li, D., Malakhov, A.V., Polilov, A.N.: A constitutive model for 3D printed continuous fiber reinforced composite structures with variable fiber content. Compos. Part B-Eng. 189, 107893 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was carried out with financial support from Russian Foundation for Basic Research and National Natural Science Foundation of China under projects 18-08-00372, 18-58-53020 and 51575430, 51811530107, respectively. The authors of the paper would like to thank Proof-Reading-Service.com (www.proof-reading-service.com) for proofreading & editing of the paper in English.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrei V. Malakhov or Xiaoyong Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakhov, A.V., Polilov, A.N., Zhang, J. et al. A Modeling Method of Continuous Fiber Paths for Additive Manufacturing (3D Printing) of Variable Stiffness Composite Structures. Appl Compos Mater 27, 185–208 (2020). https://doi.org/10.1007/s10443-020-09804-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09804-8

Keywords

Navigation