Skip to main content
Log in

Finite Element Simulation of Tensile Preload Effects on High Velocity Impact Behavior of Fiber Metal Laminates

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

As primary structures and protective structures, fiber metal laminates (FMLs) in practical application are always in preload states before possible impact damage threats. In this work, a nonlinear finite element (FE) model is developed to study the impact damage scenario where tensile preloaded FMLs are impacted by a hemispherical nose projectile at high velocities. In the modeling, the intra-layer damage in aluminum sheets and composite laminates and the delamination between adjacent plies are entirely included. The FE model is verified with available experimental results in non-preload condition and then applied to predict the high velocity impact behavior in uniaxial and biaxial tensile preload cases. The ballistic performance and damage response of representative FMLs with different preloads and impact velocities are discussed and analyzed in detail. The numerical results and modeling strategy here provides applicable reference for preloaded impact issues in other FMLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Avcu, E.: A review: fibre metal laminates, background, bonding types and applied test methods. Mater. Des. 32(7), 3671–3685 (2011)

    Article  Google Scholar 

  2. Gu, B.: A microstructure model for finite-element simulation of 3D rectangular braided composite under ballistic penetration. Philos. Mag. 87(30), 4643–4669 (2007)

    Article  CAS  Google Scholar 

  3. Zhang, C., Curiel-Sosa, J.L., Duodu, E.A.: Finite element analysis of the damage mechanism of 3D braided composites under high-velocity impact. J. Mater. Sci. 52(8), 4658–4674 (2017)

    Article  CAS  Google Scholar 

  4. Duodu, E.A., Gu, J.N., Shang, Z., Ding, W., Tang, S.: Damage induced by high-velocity impact on composite structures using finite element simulation. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering. 41, 97–107 (2017)

    Article  Google Scholar 

  5. Mo, G.L., Li, Z.X., Wu, Z.L.: A theoretical model of non-deforming bullets penetrating ballistic gelatin. International Journal of Impact Engineering. 114, 105–110 (2018)

    Article  Google Scholar 

  6. Jiang, H., Ren, Y., Zhang, S., Liu, Z.H., Yu, G.Q., Xiang, J.W.: Damage and perforation resistance behaviors induced by projectile impact load on bonding-patch repaired and scarf-patch repaired composite laminates. International Journal of Damage Mechanics. 28(4), 502–537 (2019)

    Article  Google Scholar 

  7. Chen, Y., Pang, B., Zheng, W., Peng, K.K.: Experimental investigation on normal and oblique ballistic impact behavior of fiber metal laminates. Journal of Reinforced Plastics & Composites. 32(23), 1769–1778 (2013)

    Article  CAS  Google Scholar 

  8. Santiago, R., Cantwell, W., Alves, M.: Impact on thermoplastic fibre-metal laminates: experimental observations. Compos. Struct. 159, 800–817 (2017)

    Article  Google Scholar 

  9. Zarei, H., Sadighi, M., Minak, G.: Ballistic analysis of fiber metal laminates impacted by flat and conical impactors. Compos. Struct. 161, 65–72 (2017)

    Article  Google Scholar 

  10. Zhu, Q., Zhang, C., Curiel-Sosa, J.L., Bui, T.Q., Xu, X.J.: Finite element simulation of damage in fiber metal laminates under high velocity impact by projectiles with different shapes. Compos. Struct. 214, 73–82 (2019)

    Article  Google Scholar 

  11. Veldman, R.L., Ari-Gur, J., Clum, C.: Response of pre-pressurized reinforced plates under blast loading. International Journal of Impact Engineering. 35, 240–250 (2008)

    Article  Google Scholar 

  12. García-Castillo, S.K., Sanchez-Saez, S., Barbero, E.: Behaviour of uniaxially preloaded aluminium plates subjected to high-velocity impact. Mech. Res. Commun. 38(5), 404–407 (2011)

    Article  Google Scholar 

  13. Heimbs, S., Bergmann, T., Schueler, D., Toso-Pentecote, N.: High velocity impact on preloaded composite plates. Compos. Struct. 111, 158–168 (2014)

    Article  Google Scholar 

  14. Johnson, A.F.: Nathalie Toso-Pentecôte, Schueler D. damage tolerance of pre-stressed composite panels under impact loads. Appl. Compos. Mater. 21(1), 123–147 (2014)

    Article  Google Scholar 

  15. García-Castillo, S.K., Sanchez-Saez, S., Lopez-Puente, J., Barbero, E., Navarro, C.: Impact behaviour of preloaded glass/polyester woven plates. Compos. Sci. Technol. 69(6), 711–717 (2009)

    Article  Google Scholar 

  16. García-Castillo, S.K., Navarro, C., Barbero, E.: Damage in preloaded glass/vinylester composite panels subjected to high-velocity impacts. Mech. Res. Commun. 55, 66–71 (2014)

    Article  Google Scholar 

  17. Cherniaev, A., Telichev, I.: Experimental and numerical study of hypervelocity impact damage in composite materials fabricated by filament winding. International Journal of Impact Engineering. 98, 19–33 (2016)

    Article  Google Scholar 

  18. Mikkor, K.M., Thomson, R.S., Herszberg, I., Weller, T., Mouritz, A.P.: Finite element modelling of impact on preloaded composite panels. Compos. Struct. 75(1–4), 501–513 (2006)

    Article  Google Scholar 

  19. Dominik, S., Toso-Pentecote, N., Voggenreiter, H.: Effects of static preloads on the high velocity impact response of composite plates. Compos. Struct. 153, 549–556 (2016)

    Article  Google Scholar 

  20. Moallemzadeh, A.R., Sabet, S.A.R., Abedini, H.: Preloaded composite panels under high velocity impact. International Journal of Impact Engineering. 114, 153–159 (2018)

    Article  Google Scholar 

  21. Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)

    Article  Google Scholar 

  22. Karim, M.R., Hoo Fatt, M.S.: Rate-dependent constitutive equations for carbon fiber-reinforced epoxy. Polym. Compos. 27(5), 513–528 (2006)

    Article  CAS  Google Scholar 

  23. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47(2), 329–334 (1980)

    Article  Google Scholar 

  24. Camanho PP, Davila CG. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials; 2002. NASA/TM-2002-211737

  25. Xu, M.M., Huang, G.Y., Dong, Y.X., Shun, S.F.: An experimental investigation into the high velocity penetration resistance of CFRP and CFRP/aluminum laminates. Compos. Struct. 188, 450–460 (2018)

    Article  Google Scholar 

  26. Zhang, C., Zhu, Q., Curiel-Sosa, J.L., Bui, T.Q.: Ballistic performance and damage simulation of fiber metal laminates under high-velocity oblique impact. International Journal of Damage Mechanics. (2020). https://doi.org/10.1177/1056789519900784

  27. Zhang, C., Duodu, E.A., Gu, J.: Finite element modeling of damage development in cross-ply composite laminates subjected to low velocity impact. Compos. Struct. 173, 219–227 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11972172), Natural Science Foundation of Jiangsu Province (BK20180855), China Postdoctoral Science Foundation (2018 M640459) and Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics) (MCMS-E-0219Y01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Zhang or Pibo Ma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhu, Q., Wang, Y. et al. Finite Element Simulation of Tensile Preload Effects on High Velocity Impact Behavior of Fiber Metal Laminates. Appl Compos Mater 27, 251–268 (2020). https://doi.org/10.1007/s10443-020-09807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09807-5

Keywords

Navigation