Skip to main content

Advertisement

Log in

Elastic Modulus of Woven Bone: Correlation with Evolution of Porosity and X-ray Greyscale

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The woven bone created during the healing of bone regeneration processes is characterized as being extremely inhomogeneous and having a variable stiffness that increases with time. Therefore, it is important to study how the mechanical properties of woven bone are dependent on its microarchitecture and especially on its porosity and mineral content. The porosity and the x-ray greyscale of specimens taken from bone transport studies in sheep were assessed by means of ex vivo imaging. Our study demonstrates that the porosity of the woven bone in the distraction area diminishes during the healing process from 73.3% 35 days after surgery to 31.9% 525 days after surgery. In addition, the woven bone’s porosity is negatively correlated with its Young’s modulus. The x-ray greyscale, was measured as an indicator of the level of mineralization of the woven bone. Greyscale index has been demonstrated to be inversely proportional to porosity and to increase to up to 60–80% of the level in cortical bone. The results of this study may contribute to the development of micromechanical models of woven bone and improvements in in silico modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aldieri, A., M. Terzini, G. Osella, A. M. Priola, A. Angeli, A. Veltri, et al. Osteoporotic hip fracture prediction: is T-score based criterion enough? A hip structural analysis based model. J. Biomech. Eng. 2018. https://doi.org/10.1115/1.4040586.

    Article  PubMed  Google Scholar 

  2. Augat, P., and L. E. Claes. Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J. Bone Miner. Res. 11:1356–1363, 1996.

    CAS  PubMed  Google Scholar 

  3. Boccaccio, A., P. J. Prendergast, C. Pappalettere, and D. J. Kelly. Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med. Biol. Eng. Comput. 46:283–298, 2008.

    CAS  PubMed  Google Scholar 

  4. Brunner, U. H., J. Cordey, L. Schweiberer, and S. M. Perren. Force required for bone segment transport in the treatment of large bone defects using medullary nail fixation. Clin. Orthop. Relat. Res. 301:147–155, 1994.

    Google Scholar 

  5. Burke, D. P., and D. J. Kelly. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model. PLoS ONE 7:e40737, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Claes, L. E., J. Laule, K. Wenger, G. Suger, U. Liener, and L. Kinzl. The influence of stiffness of the fixator on maturation of callus after segmental transport. J. Bone Jt. Surg. Br. 82:142–148, 2000.

    CAS  Google Scholar 

  7. Currey, J. D. The relationship between the stiffness and the mineral content of bone. J. Biomech. 2:477–480, 1969.

    CAS  PubMed  Google Scholar 

  8. Currey, J. D. Changes in the impact energy absorption of bone with age. J. Biomech. 12:459–469, 1979.

    CAS  PubMed  Google Scholar 

  9. Currey, J. D. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 21:131–139, 1988.

    CAS  PubMed  Google Scholar 

  10. Currey, J. D. Bones: Structure and Mechanics. Princeton: Princeton University Press, 2002.

    Google Scholar 

  11. Currey, J. D. Incompatible mechanical properties in compact bone. J. Theor. Biol. 231:569–580, 2004.

    PubMed  Google Scholar 

  12. Currey, J. D., and R. Shahar. Cavities in the compact bone in tetrapods and fish and their effect on mechanical properties. J. Struct. Biol. 183:107–122, 2013.

    PubMed  Google Scholar 

  13. Dahl, M. T., B. Gulli, and T. Berg. Complications of limb lengthening. A learning curve. Clin. Orthop. Relat. Res. 301:10–18, 1994.

    Google Scholar 

  14. Floerkemeier, T., F. Thorey, C. Hurschler, M. Wellmann, F. Witte, and H. Windhagen. Stiffness of callus tissue during distraction osteogenesis. Orthop. Traumatol. Surg. Res. 96:155–160, 2010.

    CAS  PubMed  Google Scholar 

  15. Fürmetz, J., C. Soo, W. Behrendt, P. H. Thaller, H. Siekmann, J. Böhme, and C. Josten. Bone transport for limb reconstruction following severe tibial fractures. Orthop. Rev. (Pavia) 8(1):6384, 2016.

    Google Scholar 

  16. Gong, J. K., J. S. Arnold, and S. H. Cohn. The density of organic and volatile and non-volatile inorganic components of bone. Anat. Re. 149:319–324, 1964.

    CAS  Google Scholar 

  17. Ilizarov, G. A. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin. Orthop. Relat. Res. 239:263–285, 1989.

    Google Scholar 

  18. Ilizarov, G. A. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin. Orthop. Relat. Res. 238:249–281, 1989.

    Google Scholar 

  19. Isaksson, H., O. Comas, C. C. van Donkelaar, J. Mediavilla, W. Wilson, R. Huiskes, et al. Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J. Biomech. 40:2002–2011, 2007.

    PubMed  Google Scholar 

  20. Isaksson, H., C. C. van Donkelaar, R. Huiskes, and K. Ito. A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J. Theor. Biol. 252:230–246, 2008.

    PubMed  Google Scholar 

  21. Lacroix, D., and P. Prendergast. A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35:1163–1171, 2002.

    CAS  PubMed  Google Scholar 

  22. Leong, P. L., and E. F. Morgan. Correlations between indentation modulus and mineral density in bone-fracture calluses. Integr. Comp. Biol. 49:59–68, 2009.

    PubMed  PubMed Central  Google Scholar 

  23. López-Pliego, E. M., M. Á. Giráldez-Sánchez, J. Mora-Macías, E. Reina-Romo, and J. Domínguez. Histological evolution of the regenerate during bone transport: an experimental study in sheep. Injury 47(Suppl 3):S7–S14, 2016.

    PubMed  Google Scholar 

  24. Manjubala, I., Y. Liu, D. R. Epari, P. Roschger, H. Schell, P. Fratzl, et al. Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone 45:185–192, 2009.

    CAS  PubMed  Google Scholar 

  25. Martin, B. Aging and strength of bone as a structural material. Calcif. Tissue Int. 53:S34–S39, 1993.

    PubMed  Google Scholar 

  26. Martínez-Reina, J., J. García-Rodríguez, J. Mora-Macías, J. Domínguez, and E. Reina-Romo. Comparison of the volumetric composition of lamellar bone and the woven bone of calluses. Proc. Inst. Mech. Eng. H. 232:682–689, 2018.

    PubMed  Google Scholar 

  27. McCalden, R. W., J. A. McGeough, M. B. Barker, and C. M. Court-Brown. Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J. Bone Jt. Surg. Am. 75:1193–1205, 1993.

    CAS  Google Scholar 

  28. Mora-Macías, J., M. A. Giráldez-Sánchez, M. López, J. Domínguez, and E. Reina-Romo. Comparison of methods for assigning the material properties of the distraction callus in computational models. Int. J. Numer. Methods Biomed. Eng. 35(9):e3227, 2019.

    Google Scholar 

  29. Mora-Macías, J., A. Pajares, P. Miranda, J. Domínguez, and E. Reina-Romo. Mechanical characterization via nanoindentation of the woven bone developed during bone transport. J. Mech. Behav. Biomed. Mater. 74:236–244, 2017.

    PubMed  Google Scholar 

  30. Mora-Macías, J., E. Reina-Romo, and J. Domínguez. Distraction osteogenesis device to estimate the axial stiffness of the callus in vivo. Med. Eng. Phys. 37:969–978, 2015.

    PubMed  Google Scholar 

  31. Mora-Macías, J., E. Reina-Romo, and J. Domínguez. Model of the distraction callus tissue behavior during bone transport based in experiments in vivo. J. Mech. Behav. Biomed. Mater. 61:419–430, 2016.

    PubMed  Google Scholar 

  32. Mora-Macías, J., E. Reina-Romo, M. López-Pliego, M. A. Giráldez-Sánchez, and J. Domínguez. In vivo mechanical characterization of the distraction callus during bone consolidation. Ann. Biomed. Eng. 43:2663–2674, 2015.

    PubMed  Google Scholar 

  33. Mora-Macías, J., E. Reina-Romo, J. Morgaz, and J. Domínguez. In vivo gait analysis during bone transport. Ann. Biomed. Eng. 43:2090–2100, 2015.

    PubMed  Google Scholar 

  34. Papakostidis, C., M. Bhandari, and P. V. Giannoudis. Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis. Bone Jt. J. 95-B(12):1673–1680, 2013.

    CAS  Google Scholar 

  35. Renders, G. A. P., L. Mulder, L. J. van Ruijven, and T. M. G. J. van Eijden. Porosity of human mandibular condylar bone. J. Anat. 210:239–248, 2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Richardson, S. S., W. W. Schairer, A. T. Fragomen, and S. R. Rozbruch. Cost comparison of femoral distraction osteogenesis with external lengthening over a nail versus internal magnetic lengthening nail. J. Am. Acad. Orthop. Surg. 27(9):e430–e436, 2019.

    PubMed  Google Scholar 

  37. Roschger, P., P. Fratzl, J. Eschberger, and K. Klaushofer. Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326, 1998.

    CAS  PubMed  Google Scholar 

  38. Schaffler, M. B., and D. B. Burr. Stiffness of compact bone: effects of porosity and density. J. Biomech. 21:13–16, 1988.

    CAS  PubMed  Google Scholar 

  39. Shefelbine, S. J., U. Simon, L. Claes, A. Gold, Y. Gabet, I. Bab, et al. Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis. Bone 36:480–488, 2005.

    PubMed  Google Scholar 

  40. Shen, Z., H. Lin, G. Chen, Y. Zhang, Z. Li, D. Li, L. Xie, Y. Li, F. Huang, and Z. Jiang. Comparison between the induced membrane technique and distraction osteogenesis in treating segmental bone defects: an experimental study in a rat model. PLoS ONE 14(12):e0226839, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Vetter, A., D. R. Epari, R. Seidel, H. Schell, P. Fratzl, G. N. Duda, and R. Weinkamer. Temporal tissue patterns in bone healing of sheep. J. Orthop. Res. 28(11):1440–1447, 2010.

    PubMed  Google Scholar 

  42. Vetter, A., Y. Liu, F. Witt, I. Manjubala, O. Sander, D. R. Epari, P. Fratzl, G. N. Duda, and R. Weinkamer. The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments. J. Biomech. 44(3):517–523, 2011.

    CAS  PubMed  Google Scholar 

  43. Wachter, N. J., G. D. Krischak, M. Mentzel, M. R. Sarkar, T. Ebinger, L. Kinzl, et al. Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31:90–95, 2002.

    CAS  PubMed  Google Scholar 

  44. Zanetti, E. M., and C. Bignardi. Structural analysis of skeletal body elements: Numerical and experimental methods. In: Biomechanical Systems Technology: Muscular Skeletal Systems, edited by C. T. Leondes. Los Angeles, CA: University of California, 2009, pp. 185–225.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Ministerio de Economía y Competitividad del Gobierno España (Grant Number DPI2017-82501-P) and the Consejería de Innovación, Ciencia y Empleo de la Junta de Andalucía (Grant Numbers P09-TEP-5195 and US-1261691) for research funding.

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mora-Macías.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora-Macías, J., García-Florencio, P., Pajares, A. et al. Elastic Modulus of Woven Bone: Correlation with Evolution of Porosity and X-ray Greyscale. Ann Biomed Eng 49, 180–190 (2021). https://doi.org/10.1007/s10439-020-02529-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02529-6

Keywords

Navigation