Skip to main content

Advertisement

Log in

An Efficient Compressive Sensing Routing Scheme for Internet of Things Based Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Internet of Things (IoT) integrates diverse types of sensors, mobiles and other technologies to physical world and IoT technology is used in a wide range of applications. Compressive sensing based in-network compression is an efficient technique to reduce communication cost and accurately recover sensory data at the base station. In this paper, we investigate how compressive sensing can be combined with routing protocols for energy efficient data gathering in IoT-based wireless sensor networks. We propose a new compressive sensing routing scheme that includes the following new algorithms: (1) seed estimation algorithm to find the best measurement matrix by selecting the best-estimated seed, (2) chain construction algorithm to organize the network nodes during transmitting and receiving process, (3) compression approach to reduce the energy consumption and prolong the network lifetime by reducing the local data traffic, and (4) reconstruction algorithm to reconstruct the original data with minimum reconstruction error. The simulation results reveal that the proposed scheme outperforms existing baseline algorithms in terms of energy consumption, network lifetime and reconstruction error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Celesti, A., Galletta, A., Carnevale, L., Fazio, M., Ĺay-Ekuakille, A., & Villari, M. (2017). An IoT cloud system for traffic monitoring and vehicular accidents prevention based on mobile sensor data processing. IEEE Sensors Journal, 18(12), 4795–4802.

    Article  Google Scholar 

  2. Mieyeville, F., Ichchou, M., Scorletti, G., Navarro, D., & Du, W. (2012). Wireless sensor networks for active vibration control in automobile structures. Smart Materials and Structures, 7, 075009.

    Article  Google Scholar 

  3. Lay-Ekuakille, A., Telesca, V., Ragosta, M., Giorgio, G. A., Mvemba, P. K., & Kidiamboko, S. (2017). Supervised and characterized smart monitoring network for sensing environmental quantities. IEEE Sensors Journal, 17(23), 7812–7819.

    Article  Google Scholar 

  4. Zheng, J., Simplot-Ryl, D., Bisdikian, C., & Mouftah, H. T. (2011). The internet of things. IEEE Communications Magazine, 49(11), 3031.

    Article  Google Scholar 

  5. Palopoli, L., Passerone, R., & Rizano, T. (2011). Scalable offline optimization of industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(2), 328–329.

    Article  Google Scholar 

  6. Singh, S. P., Urooj, S., & Ekuakille, A. L. (2016). Breast cancer detection using PCPCET and ADEWNN: A geometric invariant approach to medical X-ray image sensors. IEEE Sensors Journal, 16(12), 4847–4855.

    Article  Google Scholar 

  7. J. Haupt, W. Bajwa, & M. Rabbat (2012). Compressed sensing for networked data (pp 603–611). IEEE.

  8. Akyildiz, I., Weilian, S., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. Communications Magazin IEEE, 40(8), 5102–5114.

    Article  Google Scholar 

  9. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Network, 52(12), 2292–2330.

    Article  Google Scholar 

  10. Khedr, A. M., Osamy, W., & Agrawal, D. P. (2009). Perimeter discovery in wireless sensor networks. Journal of Parallel and Distributed Computing, 69(11), 922–929.

    Article  Google Scholar 

  11. Handy, M. J., Haase, M., & Timmermann, D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In Mobile and wireless communications network, 2002. 4th international workshop on IEEE (pp. 368–372).

  12. Salim, A., Osamy, W., & Khedr, A. M. (2014). IBLEACH: Intra-balanced LEACH protocol for wireless sensor networks. Wireless Network, 20(6), 1515–1525.

    Article  Google Scholar 

  13. Lindsey, S., & Raghavendra, C. (2002). PEGASIS: Power-efficient gathering in sensor information systems. Aerospace Conference Proceedings IEEE, 3, 1125–1130.

    Google Scholar 

  14. Ali, S., & Refaay, S. (2011). Chain-Chain based routing protocol. IJCSI International Journal of Computer Science Issues, 8, 694–0814.

    Google Scholar 

  15. Aziz, A., Salim, A., & Osamy, W. (2013). Adaptive and efficient compressive sensing based technique for routing in wireless sensor networks. In Proceedings, INTHITEN (IoT and its enablers) conference (pp. 3–4).

  16. Luo, J., Xiang, L., & Rosenberg, C. (2010). Does compressed sensing improve the throughput of wireless sensor networks?. In Proceedings of the IEEE international conferecne on communications (ICC) (pp. 1–6).

  17. Xiang, L., Jun, L., & Athanasios, V. (2002). Compressed data aggregation for energy efficient wireless sensor networks. In Aerospace conference proceedings, 2002 IEEE (vol. 3, pp. 1125–1130).

  18. Chong, L., Feng, W., Jun, S., & Chang, C. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking, MobiCom’09 (pp. 145–156). New York, NY: ACM.

  19. Lan, K. C., & Wei, M. Z. (2017). A compressibility-based clustering algorithm for hierarchical compressive data gathering. IEEE Sensors Journal, 17(8), 2550–2562.

    Article  Google Scholar 

  20. Luo, C., Wu, F., & Sun, J. (2010). Efficient measurement generation and pervasive sparsity for compressive data gathering. IEEE Transactions on Wireless Communications, 9(12), 3728–3738.

    Article  Google Scholar 

  21. Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In Proceedings of the IEEE sensor, mesh, and ad hoc communication and networks (SECON 11) (pp. 46–54).

  22. Nguyenab, M. T., & Teaguea, A. K. (2017). Compressive sensing based random walk routing in wireless sensor networks. Ad Hoc Networks, 54, 99–110.

    Article  Google Scholar 

  23. Li, Y. (2018). Compressed Sensing in Multi-Hop Large-Scale Wireless Sensor Networks Based on Routing Topology Tomography. IEEE Access, 6, 27637–27650.

    Article  Google Scholar 

  24. Zheng, H., Li, J., Feng, X., Guo, W., Chen, Z., & Xiong, N. (2017). Spatial-temporal data collection with compressive sensing in mobile sensor networks. Sensors, 17, 2575. https://doi.org/10.3390/s17112575.

    Article  Google Scholar 

  25. Yu, X., & Baek, S. J. (2018). Joint routing and scheduling for data collection with compressive sensing to achieve order-optimal latency, 13(10), 1–13.

    Google Scholar 

  26. Zhang, D., Zhang, T., Zhan, J., Dong, Y., & Zhang, X. (2018). A kind of effective data aggregating method based on compressive sensing for wireless sensor network. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-018-1176-4.

    Article  Google Scholar 

  27. Nikam, K., & Mohani, S. P. (2018). IoT based greenhouse monitoring using data compressive sensing protocol in WSN: A review Kranti. International Journal of Innovative Research in Computer and Communication Engineering, 6(2), 1234–1237.

    Google Scholar 

  28. Khedr, A. M. (2015). Effective data acquisition protocol for multi-hop heterogeneous wireless sensor networks using compressive sensing. Algorithms, 8(4), 910–928.

    Article  MATH  Google Scholar 

  29. Omar, D. M., Khedr, A. M., & Agrawal, Dharma P. (2017). Optimized clustering protocol for balancing energy in wireless sensor networks. International Journal of Communication Networks and Information Security (IJCNIS), 9(3), 367–375.

    Google Scholar 

  30. Khedr, A. M., & Omar, D. M. (2015). SEP-CS: Effective routing protocol for heterogeneous wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 26, 211–232.

    Google Scholar 

  31. Osamy, W., Khedr, A. M., Aziza, A., & El-Sawya, A. (2018). Cluster-tree routing scheme for data gathering in periodic monitoring applications. IEEE Access, 6, 77372–77387.

    Article  Google Scholar 

  32. Osamy, W., Salim, A., & Khedr, A. M. (2018). An information entropy based-clustering algorithm in heterogeneous wireless sensor networks. Wireless Networks. https://doi.org/10.1007/s11276-018-1877-y-0123456789.

    Article  Google Scholar 

  33. Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126, 12–28.

    Article  Google Scholar 

  34. Omar, D. M. (2018). ERPLBC: Energy efficient routing protocol for load balanced clustering in wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 42, 145–169.

    Google Scholar 

  35. Haupt, J., Bajwa, W., & Rabbat, M. (2008). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25(2), 92–101.

    Article  Google Scholar 

  36. Jin, W., ShaoJie, T., Baocai, Y., & Yang, X. (2013). Data gathering in wireless sensor networks through intelligent compressive sensing. Digital Signal Processing, 23, 1539–1548.

    Article  MathSciNet  Google Scholar 

  37. Li, S., Da Xu, L., & Wang, X. (2013). Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Transactions on Industrial Informatics, 9(4), 2177–2186.

    Article  Google Scholar 

  38. Burak, N., & Erdogan, H. (2013). Compressed sensing signal recovery via forward-backward pursuit. Digital Signal Processing, 23, 1539–1548.

    Article  MathSciNet  Google Scholar 

  39. Duarte, M., Sarvotham, S., Wakin, M., Baron, D., & Baraniuk, R. (2005). Joint sparsity models for distributed compressed sensing. In Online proceedings of the workshop on signal processing with adaptive sparse structured representations (SPARS).

  40. Salim, A., & Osamy, W. (2015). Distributed multi chain compressive sensing based routing algorithm for wireless sensor networks. Wireless Networks, 21(4), 1379–1390.

    Article  Google Scholar 

  41. Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  42. Baraniuk, R. G. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–121.

    Article  Google Scholar 

  43. Mallat, S. (1999). A wavelet tour of signal processing. Cambridge: Academic Press.

    MATH  Google Scholar 

  44. Candes, E., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(52), 145–156.

    MathSciNet  MATH  Google Scholar 

  45. Venkataramani, R., & Bresler, Y. (1998) Sub-nyquist sampling of multiband signals: perfect reconstruction and bounds on aliasing error. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 12–15).

  46. Tropp, J., & Gilber, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(14), 4655–4666.

    Article  MathSciNet  MATH  Google Scholar 

  47. Donoho, D., Yaakov, T., Drori, I., & Jean, S. (2012). Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory, 58(2), 1094–1121.

    Article  MathSciNet  MATH  Google Scholar 

  48. Deanna, N., & Roman, V. (2009). Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics, 9(3), 317–334.

    Article  MathSciNet  MATH  Google Scholar 

  49. Bandyopadhyay, D., & Sen, J. (2011). Internet of things: Applications and challenges in technology and standardization. Wireless Personal Communications, 58, 49–69.

    Article  Google Scholar 

  50. Wei, D., & Olgica, M. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230–2249.

    Article  MathSciNet  MATH  Google Scholar 

  51. Intel Berkeley Researc Lab (2017). http://db.lcs.mit.edu/labdata/labdata.html. 9 Jun, 9:20 pm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Khedr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, A., Singh, K., Osamy, W. et al. An Efficient Compressive Sensing Routing Scheme for Internet of Things Based Wireless Sensor Networks. Wireless Pers Commun 114, 1905–1925 (2020). https://doi.org/10.1007/s11277-020-07454-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07454-4

Keywords

Navigation