Skip to main content

Advertisement

Log in

Organometallic Sodium Carbide for Heat Transfer Applications: A Thermal Lens Study

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The search for excellent heat transfer fluids necessitates the development of novel nanofluids. The paper is the first report revealing the potential of sodium carbide (Na2C2) nanoparticle for heat transfer and thermal shielding applications. For this, Na2C2 is prepared from the porous carbon matrix of Aloe vera leaves by hydrothermal method. The morphological changes on hydrothermal treatment and the thermal stability are analyzed by Field Emission Scanning Electron Microscopy and Thermogravimetry. The X-ray diffraction analysis reveals the formation of sodium carbide, which is confirmed by Fourier transform infrared, Ultraviolet–Visible–Near Infrared, and Raman spectroscopic analyses. The spectroscopic study of the sample synthesized shows indirect bandgap energy of 1.58 eV. The thermal diffusivity of Na2C2 nanofluid, determined by the single-beam thermal lens technique, exhibited 87 % enhancement for the base fluid, suggesting its potential in heat transfer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Kaggwa, J.K. Carson, Int. Nano Lett. 9, 277 (2019)

    Article  Google Scholar 

  2. S.K. Das, S.U.S. Choi, H.E. Patel, Heat Transf. Eng. 27, 3 (2006)

    Article  ADS  Google Scholar 

  3. W. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Heat Transf. Eng. 29, 432 (2008)

    Article  ADS  Google Scholar 

  4. M.S. Swapna, V. Raj, H.V. Devi, P.M. Radhamany, S. Sankararaman, Eur. Phys. J. Plus 134, 416 (2019)

    Article  Google Scholar 

  5. D. Vasudevan, D. Senthilkumar, S. Surendhiran, Int. J. Thermophys. 41, 74 (2020)

    Article  ADS  Google Scholar 

  6. M.S. Swapna, V. Raj, S. Sankararaman, Phys. Fluids 31, 117106 (2019)

    Article  ADS  Google Scholar 

  7. R. Sebastian, M.S. Swapna, V. Raj, M. Hari, S. Sankararaman, Mater. Res. Express 5, 075001 (2018)

    Article  ADS  Google Scholar 

  8. J.L. Jiménez-Pérez, R.G. Fuentes, Z.N. Correa-Pacheco, J. Tánori-Cordova, A. Cruz-Orea, G.L. Gamboa, Int. J. Thermophys. 36, 1086 (2015)

    Article  ADS  Google Scholar 

  9. J. L. Jiménez-Pérez, A. Cruz-Orea, J. F. Sánchez-Ramírez, F. Sánchez-Sinencio, L. Martínez-Pérez, and G. A. López Muñoz, Int. J. Thermophys. 30, 1227 (2009)

  10. D. Singh, E. Timofeeva, W. Yu, J. Routbort, D. France, D. Smith, J.M. Lopez-Cepero, J. Appl. Phys. 105, 64306 (2009)

    Article  Google Scholar 

  11. R.J. da Silva, R.I. Reis, L.C. Pardini, D.F. Sias, G.P. Filho, Int. J. Thermophys. 40, 88 (2019)

    Article  ADS  Google Scholar 

  12. G. Huminic, A. Huminic, C. Fleaca, F. Dumitrache, I. Morjan, Int. Commun. Heat Mass Transf. 84, 94 (2017)

    Article  Google Scholar 

  13. T.O. Oni, R.G. Ajayi, E.A. Faluru, Am. J. Eng. Res. 7, 260 (2018)

    Google Scholar 

  14. H. V. Saritha Devi, M. S. Swapna, G. Ambadas, and S. Sankararaman, J. Appl. Phys. 124, 065303 (2018)

  15. H. O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, and Applications (Noyes Publications Park Ridge, 1996)

  16. M. S. Swapna, H. V. Saritha Devi, G. Ambadas, and S. Sankararaman, J. Mater. Sci. Mater. Electron. 30, 508 (2019)

  17. U. Ruschewitz, Coord. Chem. Rev. 244, 115 (2003)

    Article  Google Scholar 

  18. A.J. Silvestre, M.J.G. Santos, O. Conde, Key Eng. Mater. 230–232, 56 (2002)

    Article  Google Scholar 

  19. M.S. Swapna, H.V.S. Devi, R. Sebastian, G. Ambadas, S. Sankararaman, Mater. Res. Express 4, 125602 (2017)

    Article  ADS  Google Scholar 

  20. A.G. Dumanlı, A.H. Windle, J. Mater. Sci. 47, 4236 (2012)

    Article  ADS  Google Scholar 

  21. H.V.S. Devi, M.S. Swapna, V. Raj, G. Ambadas, S. Sankararaman, Mater. Res. Express 5, 015603 (2018)

    Article  ADS  Google Scholar 

  22. S. Cheng, S. Panthapulakkal, M. Sain, and A. Asiri, J. Appl. Polym. Sci. 131, 40592(1) (2014)

    Article  Google Scholar 

  23. S. Sankara Raman and V. P. N. Nampoori, Investigation on Thermal Diffusivity of Some Selected Materials Using Laser Induced Photoacoustic Technique, International School of Photonics, 1999

  24. V. Raj, M.S. Swapna, S. Sankararaman, Eur. Phys. J. Plus 133, 544 (2018)

    Article  Google Scholar 

  25. V. Raj, S. Soumya, M.S. Swapna, S. Sankararaman, Mater. Res. Express 5, 115504 (2018)

    Article  ADS  Google Scholar 

  26. C. Hu, J.R. Whinnery, Appl. Opt. 12, 72 (1973)

    Article  ADS  Google Scholar 

  27. J. Shen, R.D. Lowe, R.D. Snook, Chem. Phys. 165, 385 (1992)

    Article  Google Scholar 

  28. J. Sell, Photothermal Investigations of Solids and Fluids (Elsevier, 2012)

  29. R.H.P. Devamani, M. Alagar, Nano. Biomed. Eng. 5, 116 (2013)

    Google Scholar 

  30. E. Ben-Dor, Y. Inbar, Y. Chen, Remote Sens. Environ. 61, 1 (1997)

    Article  ADS  Google Scholar 

  31. P.J. Curran, J.L. Dungan, B.A. Macler, S.E. Plummer, D.L. Peterson, Remote Sens. Environ. 39, 153 (1992)

    Article  ADS  Google Scholar 

  32. T.M. McLellan, J.D. Aber, M.E. Martin, J.M. Melillo, K.J. Nadelhoffer, Can. J. For. Res. 21, 1684 (1991)

    Article  Google Scholar 

  33. X. Li, C. Sun, B. Zhou, Y. He, Sci. Rep. 5, 17210 (2015)

    Article  ADS  Google Scholar 

  34. H.P.R. Aenugu, D.S. Kumar, N.P. Srisudharson, S.S. Ghosh, D. Banji, Int. J. ChemTech Res. 3, 825 (2011)

    Google Scholar 

  35. V. D’Anna, A. Spyratou, M. Sharma, H. Hagemann, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 902 (2014)

    Article  ADS  Google Scholar 

  36. A.N. Rodionov, G.V. Timofeyuk, T.V. Talalaeva, D.N. Shigorin, K.A. Kocheshkov, Russ. Chem. Bull. 14, 37 (1965)

    Article  Google Scholar 

  37. I. Kanesaka, K. Kawai, Spectrochim. Acta Part A Mol. Spectrosc. 32, 1443 (1976)

    Google Scholar 

  38. R.S. Sanchez-Carrera, B. Kozinsky, Phys. Chem. Chem. Phys. 16, 24549 (2014)

    Article  Google Scholar 

  39. H. Fast, H.L. Welsh, J. Mol. Spectrosc. 41, 203 (1972)

    Article  ADS  Google Scholar 

  40. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (John Wiley & Sons, 2005)

  41. H. V. Saritha Devi, M. S. Swapna, G. Ambadas, and S. Sankararaman, Appl. Phys. A 124, 297 (2018)

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankararaman.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swapna, M.S., Sankararaman, S. Organometallic Sodium Carbide for Heat Transfer Applications: A Thermal Lens Study. Int J Thermophys 41, 93 (2020). https://doi.org/10.1007/s10765-020-02675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02675-y

Keywords

Navigation