Skip to main content
Log in

A Study on Dual Dielectric Pocket Heterojunction SOI Tunnel FET Performance and Flicker Noise Analysis in Presence of Interface Traps

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This communication presents the performance analysis and impact of low frequency flicker noise on a dual dielectric pocket heterojunction silicon on insulator (SOI) tunnel FET (TFET). The proposed TFET structure is well optimized for different gate-source underlap length and various thickness of δp+ Si1-xGex layer. It offers an ON current of 1.16 × 10−4 A/μm providing a high ON/OFF ratio of 3.49 × 1012 and a super steeper sub-threshold swing of 2 mV/dec. The device performance is investigated with concern to interface traps while both Uniform and Gaussian trap distributions are considered. The analyses specify that the proposed device is insusceptible to ON current degradation in presence of interface traps in comparison to OFF current behaviour. Electrical noise performance is examined in presence of interface traps and different mole fraction of germanium (Ge) in δp+ Si1-xGex layer. The device is further tested for its parasitic capacitances and transconductance to drain current ratio (gm/ID) behaviour. The high ratio of obtained gm/ID makes it compatible for future low power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarangi S, Bhushan S, Santra A, Dubey S, Jit S, Tiwari PK (2013) A rigorous simulation based study of gate misalignment effects in gate engineered double-gate (DG) MOSFETs. Superlattice Microst 60:263–279

    Article  CAS  Google Scholar 

  2. Chaudhry A, Kumar MJ (2004) Controlling Short-Channel effects in deep-sub-micron SOI MOSFETs for improved reliability: a review. IEEE Trans Device Mater Reliab 4:99–109

    Article  Google Scholar 

  3. Datta S, Liu H, Narayanan V (2014) Tunnel FET technology: a liability perspective. Micro electron. Reliab 54:861–874

    Article  Google Scholar 

  4. Ortiz-Conde A, Garcia-Sanchez FJ, Muci J, Sucre-Gonzalez A, Martino JA, Der Agopian PG et al (2014) Threshold voltage extraction in tunnel FETs. Solid State Electron 93:49–55

    Article  CAS  Google Scholar 

  5. Lu H, Esseni D, Seabaugh A (2015) Universal analytic model for tunnel FET circuit simulation. Solid State Electron 108:110–117

    Article  CAS  Google Scholar 

  6. Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high k gate dielectric. IEEE trans. Electron Devices 54:1725–1733

    Article  CAS  Google Scholar 

  7. Zhaonian Yang, (2016 ) Tunnel Field-Effect Transistor With an L-Shaped Gate IEEE Electronic Device Letters 37

  8. Sneh S, Jagadesh Kumar M (2011) Investigation of the novel attributes of a dual material gate Nanoscale tunnel field effect transistor. IEEE Trans on Electron Devices 58:404–410

    Article  Google Scholar 

  9. Cao W, Yao CJ, Jiao GF, Huang Daming YHY, Ming-Fu L (2011) Improvement in reliability of tunneling field-effect transistor with p-n-i-n structure. IEEE Transactions on Electron Devices 58:2122–2126

    Article  CAS  Google Scholar 

  10. Bhuwalka KK, Sedlmaier S (2004) Vertical tunnel field-effect transistor. IEEE Transactions on Electron Devices 51:279–282

    Article  CAS  Google Scholar 

  11. Bahniman G, Mohammad WA (2013) Junctionless tunnel field effect transistor. IEEE Electron Devices Letters 34:584–586

    Article  Google Scholar 

  12. Kao KH, William ASV, Vandenberghe G, et.al (2012) Direct and indirect band-to-band tunneling in germanium-based TFETs. IEEE Transactions Electron Devices 59:292–301

  13. Mitra SK, Rupam G, Bhowmick B (2016) A hetero-dielectric stack gate SOI-TFET with Back gate and its application as a digital inverter. Superlattice Microst 92:37–51

    Article  CAS  Google Scholar 

  14. Lv Y, Huang Q, Wang H, Chang S, He J (2016) A numerical study on grapheme nano ribbon heterojunction dual-material gate tunnel FET. IEEE Electron Device Lett 37:1354–1357

    Article  Google Scholar 

  15. Chung SS (2012) The variability issues in small scale strained CMOS devices: random dopant and trap induced fluctuations. Proc. ISCDG: 107-111

  16. Wang R et al (2013) A unified approach for trap-aware device/circuit co-design in nanoscale CMOS technology. IEDM Tech. Dig: 834-837

  17. Jiao GF et al (2009) New degradation mechanisms and reliability performance in tunneling field effect transistors. Proc IEEE IEDM:1–4

  18. Pandey R, Rajamohanan B et.al (2014) Electrical noise in Heterojunction Interband tunnel FETs. IEEE Transactions on Electron Devices 61: 552–560

  19. Choi WY, Lee W (2010) Hetero-gate-dielectric tunneling field-effect transistors. IEEE Transactions on Electron Devices 57:2317–2319

    Article  Google Scholar 

  20. Upasana NR, Saxena M, Gupta M (2016) Investigation of dielectric pocket induced variations in tunnel field effect transistor. Superlattice Microst 92:380–390

    Article  CAS  Google Scholar 

  21. Bhuwalka KK, Schulze J, Ignaz E (2004) Performance enhancement of vertical tunnel field-effect transistor with SiGe in δp+ layer. Jpn J Appl Phys 43:4073–4078

    Article  CAS  Google Scholar 

  22. Upasana NR, Saxena M, Gupta M (2019) Exploring the applicability of well optimized dielectric pocket tunnel transistor for future low power applications. Superlattice Microst 126:8–16

    Article  CAS  Google Scholar 

  23. Zhang L Mansun Chan tunneling field effect transistor technology. Springer

  24. User SD (2009). Synopsys:2009

  25. Kim HW, Kim JH, Kim SW, Sun MC, Park E, Park BG (2014) Tunneling field effect transistor with Si/SiGe material for high current drivability. J Appl Phys. 53(6S): 06JE12-1-06JE12-4

  26. Majumdar K, Rajaram S. Konjady, Tejas S Raj et al. (2011) Underlap optimization in HFinFET in presence of Interface traps. IEEE Trans Nanotechnol 10. https://doi.org/10.1109/TNANO.2011.2119401, 1249, 1253

  27. Wei L, Hongxia L, Wang S, Shupeng C, Yang Z (2017) Design of High Performance Si/SiGe Heterojunction tunneling FETs with a T-shaped gate. Nanoscale Res Lett 12:198. https://doi.org/10.1186/s11671-017-1958-3

    Article  CAS  Google Scholar 

  28. Biswas A, Dan SS, Royer CL, Grabinski W, Ionescu AM (2012) TCAD simulation of SOI TFETs and calibration of non-local band-to-band tunneling model. Micro Electron Eng 98:334–337

    Article  CAS  Google Scholar 

  29. Wang W, Hwang J, Xuan Y, Ye PD (2011) Analysis of electron mobility in inversion-mode MOSFETs, IEEE Trans. Electron devices. 58: 1972-1978. https://doi.org/10.1109/TED.2011.2146255

  30. Ghosh P, Bhowmick B (2018) Low-frequency noise analysis of heterojunction SELBOX TFET. Applied Physics A 124

  31. Yingxin Q, Wang R, Qianqian H, Huang R (2014) A comparative study on the impacts of Interface traps on tunneling FET and MOSFET. IEEE Transactions on Electron Devices. 61(5):1284–1291

    Article  Google Scholar 

  32. Hichem F, Fayçal D, Toufik B (2018) The role of the Ge mole fraction in improving the performance of a nanoscale junctionless tunneling FET: concept and scaling capability. Beilstein J. Nanotechnol 9:1856–1862. https://doi.org/10.3762/bjnano.9.177

    Article  CAS  Google Scholar 

  33. Haartman Von M (2007) Low-frequency noise in advanced MOS devices

  34. Nougier JP (1994) Fluctuations and noise of hot carriers in semiconductor materials and devices. IEEE trans. Electron Devices 41:2034–2049

    Article  CAS  Google Scholar 

  35. Huang Q, Huang R, Chen C, Wu C, Wang J, Wang C et al (2014) Deep insights into low frequency noise behaviour of tunnel FETs with source junction engineering. Symposium on VLSI Technology, Digest of Technical Papers, pp 70–71

    Google Scholar 

  36. Rupam G, Brinda B, Baishya S (2016) Effect of scaling on noise in circular gate TFET and its application as a digital inverter. Microelectron J 53:16–24

    Article  Google Scholar 

  37. Neves FS, Agopianand PGD, Martino JA, Cretu B, Rooyackers R, Vandooren A, Simoen E, Thean AV, Claeys C (2016) Low frequency noise analysis and modeling in vertical tunnel FETs with Ge source. IEEE Trans Electron Devices 63:1658–1665

    Article  CAS  Google Scholar 

  38. Sweta C, Sanjeet SK, Sanjay K et al (2017) Temperature analysis of Ge/Si heterojunction SOI-tunnel FET. Superlattice Microst 110:162–170

    Article  Google Scholar 

  39. Venkatesh P, Nigam K, Pandey S, Dj S, Kondekar NP (2017) Impact of Interface trap charges on performance of electrically doped tunnel FET with heterogeneous gate dielectric. IEEE Trans Device Mater Reliab 17(1):245–252

    Article  CAS  Google Scholar 

  40. Madan J, Chaujar R (2017) Numerical simulation of N+ source pocket PIN-GAA-tunnel FET: impact of Interface trap charges and temperature. IEEE Transactions on Electron Devices 64(4):1482–1488

    Article  Google Scholar 

  41. Leonardo B, Mariana S, Berardi RS (2015) TFET-based circuit design using the Transconductance generation efficiency gm/Id method. IEEE Journal of the Electron Devices Society 3:208–216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debika Das.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Chakraborty, U. A Study on Dual Dielectric Pocket Heterojunction SOI Tunnel FET Performance and Flicker Noise Analysis in Presence of Interface Traps. Silicon 13, 787–798 (2021). https://doi.org/10.1007/s12633-020-00488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00488-0

Keywords

Navigation