Skip to main content
Log in

An efficient computational method for local fractional transport equation occurring in fractal porous media

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The present article deals with the local fractional linear transport equations (LFLTE) in fractal porous media. LFLTE play a key role in different scientific problems such as aeronomy, superconductor, semiconductors, turbulence, gas mixture, plasma and biology. A numerical scheme namely q-local fractional homotopy analysis transform method (q-LFHATM) is applied to get the solution of LFLTE. The results obtained by using of q-LFHATM show that the proposed scheme is very suitable and easy to perform with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baleanu D, Jassim HK, Khan H (2018) A modification fractional variational iteration method for solving non-linear gas dynamic and coupled KdV equations involving local fractional operators. Thermal Sci 22(1):S165–S175

    Article  Google Scholar 

  • Betbeder-Matibet O, Nozieres P (1969) Transport equations in clean superconductors. Ann Phys 51(3):392–417

    Article  Google Scholar 

  • Blotekjaer K (1970) Transport equations for electrons in two-valley semiconductors. IEEE Trans Electron Devices 17(1):38–47

    Article  Google Scholar 

  • Daly BJ, Harlow FH (1970) Transport equations in turbulence. Phys Fluids 13(11):2634–2649

    Article  Google Scholar 

  • El-Tawil MA, Huseen SN (2012) The q-homotopy analysis method (q-HAM). Int J Appl Math Mech 8:51–75

    Google Scholar 

  • El-Tawil MA, Huseen SN (2013) On convergence of the q-homotopy analysis method. Int J Contemp Math Sci 8:481–497

    Article  MathSciNet  Google Scholar 

  • Hemeda AA, Eladdad EE, Lairje IA (2018) Local fractional analytical methods for solving wave equations with local fractional derivative. Math Methods Appl Sci 41(6):2515–2529

    MathSciNet  MATH  Google Scholar 

  • Hristov J (2010) Heat-balance integral to fractional (half-time) heat diffusion sub-model. Thermal Sci 14(2):291–316

    Article  Google Scholar 

  • Kadem A, Luchko Y, Baleanu D (2010) Spectral method for solution of the fractional transport equation. Rep Math Phys 66(1):103–115

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar D, Singh J, Baleanu D (2017) A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves. Math Methods Appl Sci 40(15):5642–5653

    Article  MathSciNet  MATH  Google Scholar 

  • Li M et al (2014) Approximate solutions for local fractional linear transport equations arising in fractal porous media. Adv Math Phys. https://doi.org/10.1155/2014/487840

    Article  MathSciNet  MATH  Google Scholar 

  • Lutz E (2001) Fractional transport equations for L´evy stable processes. Phys Rev Lett 86(11):2208–2211

    Article  Google Scholar 

  • Maitama S, Zhao W (2019) Local fractional homotopy analysis method for solving non-differentiable problems on Cantor sets. Adv Difference Eqns 2019:127

    Article  MathSciNet  MATH  Google Scholar 

  • Mikhailovskii AB, Tsypin VS (1984) Transport equations of plasma in a curvilinear magnetic field. Beitraege aus der Plasmaphysik 24(4):335–354

    Article  Google Scholar 

  • Perthame B (2006) Transport equations in biology. Springer, Berlin

    MATH  Google Scholar 

  • Povstenko YZ (2004) Fractional heat conduction equation and associated thermal stress. J Therm Stresses 28(1):83–102

    Article  MathSciNet  Google Scholar 

  • Rayneau-Kirkhope D, Mao Y, Farr R (2012) Ultralight fractal structures from hollow tubes. Phys Rev Lett 109(20):204301–204304

    Article  Google Scholar 

  • Schunk RW (1975) Transport equations for aeronomy. Planet Space Sci 23(3):437–485

    Article  Google Scholar 

  • Shih TM (1982) A literature survey on numerical heat transfer. Numer Heat Transf Fundament 5(4):369–420

    Google Scholar 

  • Singh J, Kumar D, Nieto JJ (2016a) A reliable algorithm for local fractional Tricomi equation arising in fractal transonic flow. Entropy. https://doi.org/10.3390/e18060206

    Article  MathSciNet  Google Scholar 

  • Singh J, Kumar D, Swroop R (2016b) Numerical solution of time- and space-fractional coupled Burgers’ equations via homotopy algorithm. Alexandria Eng J 55(2):1753–1763

    Article  Google Scholar 

  • Singh J, Kumar D, Baleanu D, Rathore S (2019) On the local fractional wave equation in fractal strings. Math Methods Appl Sci 42(5):1588–1595

    Article  MathSciNet  MATH  Google Scholar 

  • Tanenbaum BS (1965) Transport equations for a gas mixture. Phys Fluids 8(4):683–686

    Article  Google Scholar 

  • Tarasov VE (2006) Transport equations from Liouville equations for fractional systems. Int J Mod Phys B 20(3):341–353

    Article  MathSciNet  MATH  Google Scholar 

  • Uchaikin VV, Sibatov RT (2008) Fractional theory for transport in disordered semiconductors. Commun Nonlinear Sci Numer Simul 13(4):715–727

    Article  MathSciNet  MATH  Google Scholar 

  • Wang QL et al (2012) Fractional model for heat conduction in polar hairs. Thermal Sci 16(2):339–342

    Article  Google Scholar 

  • Yang XJ (2011) Local fractional integral transforms. Progress Nonlinear Sci 4:12–25

    Google Scholar 

  • Yang XJ (2012a) Heat transfer in discontinuous media. Adv Mech Eng Appl 1(3):47–53

    Google Scholar 

  • Yang XJ (2012b) Advanced local fractional calculus and its applications. World Science, New York

    Google Scholar 

  • Yang XJ, Baleanu D (2013) Fractal heat conduction problem solved by local fractional variation iteration method. Thermal Sci 17(2):625–628

    Article  Google Scholar 

  • Yang XJ, Machado JAT, Baleanu D (2017a) Exact traveling-wave solution for local fractional boussinesq equation in fractal domain. Fractals 25(4):1740006

    Article  MathSciNet  Google Scholar 

  • Yang XJ, Machado JAT, Nieto JJ (2017b) A new family of the local fractional PDEs. Fundamenta Informaticae 151(1–4):63–75

    Article  MathSciNet  MATH  Google Scholar 

  • Yang XJ, Gao F, Srivastava HM (2017c) New rheological models within local fractional derivative. Roman Rep Phys 69(3):113

    Google Scholar 

  • Yang XJ, Gao F, Srivastava HM (2018) A new computational approach for solving nonlinear local fractional PDEs. J Comput Appl Math 339:285–296

    Article  MathSciNet  MATH  Google Scholar 

  • Zaslavsky GM (2002) Chaos, fractional kinetics, and anomalous transport. Phys Rep 371(6):461–580

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar.

Additional information

Communicated by Jorge X. Velasco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Kumar, D. & Kumar, S. An efficient computational method for local fractional transport equation occurring in fractal porous media. Comp. Appl. Math. 39, 137 (2020). https://doi.org/10.1007/s40314-020-01162-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01162-2

Keywords

Mathematics Subject Classification

Navigation