Skip to main content
Log in

Tectonics of the Northern Urals and Western Siberia: General History of Development

  • Published:
Geotectonics Aims and scope

Abstract

A review of the materials obtained over the past decade on the geology and tectonics of the North Urals and its continuation in the basement of the West-Siberian Plate allows us to clarify and supplement characteristics of the geological features of the region, and substantiate our new conclusions. We suggested more precise vertical division of complexes developed in the region into structural stages: Archean‒Paleoproterozoic, Riphean‒Vendian (Timanides), Paleozoic‒Early Jurassic (Uralides, which consist of the Uralide sensu stricto and the Old Kimmerian sub-stages), platform, and the neo-Orogenic stages. New data were presented in support of the initially unified island-arc nature of the Schuchya, Voikar, and Khulga areas of the Tagil arc sensu lato, while an alternative interpretation of the origin of zircon clusters from volcanic-sedimentary island-arc complexes, for which the mantle but not microcontinental source was supposed, is given. A complex orocline structure of the Ural‒Pai-Khoi bend of the primarily linear island arc due to the two-stage collision of the arc with the continent in the Early Carboniferous and then in the Early Jurassic, is characterized. Using PUT sesmic transect and drilling data allowed us to clarify the synform structure of the axial part and the eastern limb of the Tagil synclinorium and its transition to the East Urals zone. New data have been obtained confirming the existence of a northwestern tectonic boundary under the central part of the Yamal Peninsula, which corresponds to the contact of the Paleozoides and the submerged part of the Siberian Platform. An abnormally high concentration of hydrocarbon deposits on the Yamal Peninsula are associated with the presence of rift junction intensively developed over the superplume branch and high-density heat flow, which characterizes the zone of high geodynamic activity permeable to deep fluid-gas flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. I. Antoshkina, Reefs in the Paleozoic: Northern Urals and Adjacent Regions (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2003) [in Russian].

    Google Scholar 

  2. V. L. Andreichev, Yu. L. Ronkin, P. A. Serov, O. P. Lepikhina, and A. F. Litvinenko, “New data on the Precambrian age of Marunkeu eclogites (Polar Urals),” Dokl. Earth Sci. 413, 347–350 (2007).

    Article  Google Scholar 

  3. V. L. Andreichev, K. V. Kulikova, and A. N. Larionov, “U–Pb age of the Malyko plagiogranites (Polar Urals),” Izv., Komi Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk 12 (4), 60–66 (2012).

    Google Scholar 

  4. V. S. Bochkarev, A. M. Brekhuntsov, and K. G. Lukomskaya, “Folded basement of Yamal Peninsula,” Gorn. Vedomosti 75 (8), 6‒35 (2010).

    Google Scholar 

  5. N. V. Vakhrusheva, K. S. Ivanov, A. E. Stepanov, S. P. Shokal’skii, A. N. Azanov, V. V. Khiller, and P. B. Shiryaev, “Plagioclasites from chromite-bearing ultramafic rocks of the Rai-Iz massif,” Litosfera, No. 5, 134‒144 (2016).

    Google Scholar 

  6. V. N. Voronov and I. V. Shpurov, “Impact (explosive-shock) structure formation in the history of West Sberia,” Gorn. Vedomosti 69 (4), 56–64 (2006).

    Google Scholar 

  7. V. N. Voronov, “Shchuch’inskii synclinorium of the Polar Urals: Structural peculiarities and petroleum potential,” Gorn. Vedomosti 71 (2), 45–52 (2014).

    Google Scholar 

  8. Isotope Geochemistry in Ophiolites of the Polar Urals, Vol. 376 of Tr. Geol. Inst. Akad. Nauk SSSR (Nauka, 1983) [in Russian].

  9. L. I. Gurskaya and L. V. Smelova, “PGE mineral formation and the structure of the Syum–Keu massif (Polar Urals),” Geol. Ore Deposits 45, 309–325 (2003).

    Google Scholar 

  10. N. L. Dobretsov, “Evolution of the Urals, Kazakhstan, Tien Shan, and Altai-Sayan zone in the Uralian-Mongolian fold belt,” Geol. Geofiz. 44 (1–2), 5–27 (2003).

    Google Scholar 

  11. V. A. Dushin, P. L. Burmako, Yu. L. Ronkin, and M. A. Shishkin, “Composition and new dates for the Malyk complex metagabbroids, Polar Urals,” in Proceedings of the Conference “Lithological Complexes and Problems of Precambrian Geodynamics of the Phanerozoic Orogens,” Yekaterinburg, Russia,2008, Ed. by V. A. Koroteev (Inst. Geol. Geofiz. Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2008), pp. 27–29.

  12. E. A. Elkin, I. V. Sennikov, I. K. Bakharev, S. Yu. Belyaev, I. G. Izokh, A. V. Kanygin, A. G. Klets, A.  E. Kontorovich, V. A. Kontorovich, O. T. Obut, S. V. Saraev, and Yu. F. Filippov, “Main features of the present-day structure and formation history of the Precambrian–Paleozoic West Siberian sedimentary basin,” in Proceedings of the Conference “Basement and Framing Structures of the West Siberian Mesozoic–Cenozoic Sedimentary Basin: Their Geodynamic Evolution and Problems of Petroleum-Bering Potential,”Tyumen, Russia, 2008 (Sib. Nauchno-Anal. Tsentr, Tyumen, 2008), pp. 75–80.

  13. K. S. Ivanov, Yu. N. Fedorov, Yu. V. Erokhin, and V.  S. Ponomarev, Geological Structure of the Basement of the Near-Uralian Part of the West Siberian Petroleum Basin (Inst. Geol. Geofiz. Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2016) [in Russian].

    Google Scholar 

  14. K. S. Ivanov and Yu. V. Erokhin, “On time of the Triassic rifts system origin in Western Siberia,” Dokl. Earth Sci. 486, 521‒524 (2019).

    Article  Google Scholar 

  15. K. S. Ivanov, N. P. Kostrov, and V. A. Koroteev, “The relationship among geodynamics, heat flow, deep structure, and the oil and gas potential of Yamal,” Dokl. Earth Sci. 486, 490‒493 (2019).

    Article  Google Scholar 

  16. A. G. Iosifidi and A. N. Khramov, “On the evolution history of thrust structures in the Pay-Khoy and Polar Urals: Paleomagnetic data on Early Permian and Early Triassic deposits,” Neftegaz. Geol. Teor. Prakt., No. 2, 1‒18 (2010).

  17. A. V. Kanygin, S. V. Saraev, N. K. Bakharev, S. Yu. Belyaev, A. M. Brekhuntsov, N. P. Deshchenya, A. G. Klets, V. G. Khromykh, and A. N. Fomin, “Paleozoic of the Shchuch’inskii High: A model of geological structure of the arc complexes in the basement of the West Siberian geosyneclise,” Russ. Geol. Geophys., 45, 53‒71 (2004).

  18. B. M. Keller, I. N. Krylov, and A. Yu. Rozanov, “On the Precambrian–Paleozoic boundary in the Urals,” Sov. Geol., No. 7, 28‒35 (1975).

  19. A. G. Klets, V. A. Kontorovich, K. S. Ivanov, V. A. Kazanenkov, S. V. Saraev, V. A. Simonov, and A. N. Fomin, “Geodynamic model of the pre-Jurassic basement as the basis for petroleum-geological zoning of the Upper Precambrian–Lower Triassic structural stage of the West Siberian petroleum province,” in Proceedings of the Conference “Ways of Involving Petroleum and Ore Potential of the Khanty-Mansiysk Autonomous Region,”Khanty-Mansyisk, Russia, 2007 (Nauchno-Anal. Tsentr Ratsion. Nedropol’z., Khanty-Mansyisk, 2007), Vol. 1, pp. 79–90.

  20. A. A. Krasnobaev and N. V. Cherednichenko, “The Archean in the Urals: Evidence from zircon age,” Dokl. Earth Sci. 400, 145–148 (2005).

    Google Scholar 

  21. A. A. Krasnobaev, V. I. Kozlov, V. N. Puchkov, S. V. Busharina, N. G. Berezhnaya, and A. G. Nekhorosheva, “Zirconology of iron quartzites of the Taratash Complex (Southern Urals),” Dokl. Earth Sci. 437, 527–531 (2011).

    Article  Google Scholar 

  22. A. A. Krasnobaev, V. I. Kozlov, V. N. Puchkov, N. D. Sergeeva, S. V. Busharina, and E. N. Lepikhina, “Zirconology of Navysh volcanic rocks of the Ai Suite and the problem of the age of the Lower Riphean boundary in the Southern Urals,” Dokl. Earth Sci. 448, 185–190 (2013).

    Article  Google Scholar 

  23. N. B. Kuznetsov, A. A. Soboleva, O. V. Udoratina, M. V. Gertseva, V. L. Andreichev, and N. S. Dorokhov, “Pre-Uralian tectonic evolution of the northeastern and eastern framings of the East European Platform. Pt. 2. Late Precambrian–Cambrian collision of Baltica and Arctida,” Litosfera, No. 4, 32–45 (2007).

    Google Scholar 

  24. N. B. Kuznetsov, L. M. Natapov, and E. A. Belousova, “Results of studies of detrital zircons from Vendian sandstones of the Engane-Pe uplift (western Polar Urals); testing the ideas about the primary tectonic belonging of pre-Uralides–Timanides,” in Vol. 7 of Geol. Sb. (Inst. Geol. Ural. Nauchn. Tsentra Ross. Akad. Nauk, Ufa, 2008), pp. 54–67.

    Google Scholar 

  25. P. A. Markova, “Nyarta metamorphic complex of the Subpolar Urals: Primary nature of metamorphic rocks and paleogeographic conditions of protoliths formation,” Vestn. Inst Geol. Komi Nauchn. Tsentra Ross. Akad. Nauk, No. 7, 19–32 (2016).

    Google Scholar 

  26. E. N. Melankholina, “Passive margins of the Northern and Central Atlantic: A comparative study,” Geotectonics 45, 291–301 (2011).

    Article  Google Scholar 

  27. V. A. Nikishin, N. A. Malyshev, A. M. Nikishin, and V. V. Obmetko, “The Late Permian-Triassic system of rifts of the South Kara sedimentary basin,” Moscow Univ. Geol. Bull. 66, 377‒384 (2011).

    Article  Google Scholar 

  28. N. Yu. Nikulova, Doctoral Dissertation in Geology and Mineralogy (Syktyvkar, 2011).

  29. S. Yu. Orlov, N. B. Kuznetsov, E. L. Miller, A. A. Soboleva, and O. V. Udoratina, “ Age constraints for the Pre-Uralide-Timanide orogenic event inferred from the study of detrital zircons,” Dokl. Earth Sci. 440, 1216‒1221 (2011).

    Article  Google Scholar 

  30. V. I. Paverman, Candidate’s Dissertation in Geology and Mineralogy (Moscow, 2015).

  31. A. S. Perfil’ev, Peculiarities of Tectonics of the North Urals (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  32. G. A. Petrov, G. N. Borozdina, N. I. Tristan, and G. A. Il’yasova, “New data on stratigraphy of Silurian strata of the Tagil structure, North Urals,” Litosfera 17 (1), 31–43 (2017).

    Google Scholar 

  33. A. P. Pryamonosov, A. E. Stepanov, and G. N. Borozdina, “On the age of Kharamatolou Series (Polar Urals),” Ural. Geol. Zh. 14 (2), 51‒54 (2000).

    Google Scholar 

  34. V. N. Puchkov, Geology of the Urals and Cis-Uralian Region: Topical Problems of Stratigraphy, Tectonics, Geodynamics, and Metallogeny (DizainPoligrafServis, Ufa, 2010) [in Russian].

  35. V. N. Puchkov, “Regularities of orogenic wedges formation,” in Proceedings of the XLVI Meeting on Tectonics “Tectonics of Eurasian Fold Belts: Similarities, Differences, Characteritsic Features of Recent Orogeny, Regional Generalizations,” Moscow, Russia, 2014 (GEOS, Moscow, 2014), Vol. 2, pp. 112−116.

  36. V. N. Puchkov, “Plumes: A novel idea in geology of the Urals,” Litosfera, No. 4, 483−499 (2018).

    Google Scholar 

  37. Yu. I. Pystina and A. M. Pystin, Zircon Record of the Precambrian of the Urals (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2002) [in Russian].

    Google Scholar 

  38. Yu. I. Pystina, A. M. Pystin, and V. B. Khubanov, “The Lower Precambrian in the structure of Paleozoids of the Subpolar Urals,” Dokl. Earth Sci. 486, 609‒612 (2019).

    Article  Google Scholar 

  39. A. M. Pystin, “Precambrian evolution of the Timan–North Uralian crustal segment,” in Proceedings of the Conference “Geodynamics, Substance, and Ore Genesis of the East European Platform and Its Folded Framing,” Syktyvkar, Russia,2017 (Inst. Geol. Komi Nauchn. Tsentra Ross. Akad. Nauk, Syktyvkar, 2017), pp. 178–181.

  40. A. M. Pystin and Yu. I. Pystina, “Archean–Paleoproterozoic metamorphic history of rock in the Uralian crustal segment,” Tr. Karel. Nauchn. Tsentra Ross. Akad. Nauk, No. 7, 3–18 (2015).

    Google Scholar 

  41. A. M. Pystin and Yu. I. Pystina, “Basal deposits of the Upper Cambrian in the Timan–North Uralian region,” Litosfera, No. 3, 41–50 (2014).

    Google Scholar 

  42. A. M. Pystin and Yu. I. Pystina, “Lower Cambrian of the Timan–Uralian crustal segment: Age constraints, types, and paleogeodyamic reconstructions,” in Proceedings of the Conference “Geology, Mineral Resources, and Geoecological Problems of Bashkortostan,” Ufa, Russia,2018 (Inst. Geol. Ural. Nauchn. Tsentra Ross. Akad. Nauk, Ufa, 2018), pp. 34–43.

  43. D. N. Remizov, Granitoid Magmatism Shchuch’inskii Area of the Polyar Urals (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  44. T. V. Romanyuk, N. V. Kuznetsov, V. N. Puchkov, N. D. Sergeeva, V. I. Powerman, V. M. Gorozhanin, and E. N. Gorozhanina, “A local source of detritus for rocks of the Ai Formation (basal level of the Lower Riphean stratotype, Bashkir Uplift, Southern Urals): Evidence from U–Pb (LA-ICP-MS) dating of detrital zircons,” Dokl. Earth Sci. 484, 53–57 (2019).

    Article  Google Scholar 

  45. Yu. L. Ronkin, S. Sindern, A. V. Maslov, D. I. Matukov, U. Kramm, and O. P. Lepikhina, “Oldest (3.5 Ga) zircons of the Urals: U-Pb (SHRIMP-II) and TDM constraints,” Dokl. Earth Sci. 415, 860–865 (2007).

    Article  Google Scholar 

  46. A. V. Rybalka, G. A. Petrov, T. V. Kashubina, V. A. Kulikov, A. V. Egorkin, V. A. Dushin, and S. N. Kashubin, “Deep structure of the Urals based on the data from the Polar Uralian Transect,” Reg. Geol. Metallog., No. 48, 25–36 (2011).

  47. S. A. Ryl’kov, A. V. Rybalka, and K. S. Ivanov, “Deep structure and metallogeny of the Urals: Comparison of the deep structures of the South, Middle, and Polar Urals,” Litosfera, No. 1, 3–16 (2013).

    Google Scholar 

  48. G. N. Savel’eva, Gabbro-Ultrabasite Complexes of Uralian Ophiolites and Their Analogs in the Modern Oceanic Crust (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  49. G. N. Savel’eva, M. A. Shishkin, and A. N. Larionov, “Tectono-magmatic events of the Late Vendian in mantle complexes of the Polar Uralian ophiolites; U‒Pb dating of zircons from chromites,” in Ophiolites: Geology, Petrology, Metallogeny, and Geodynamics, Ed. by V. A. Koroteev (Inst. Geol. Geofiz. Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2006), pp. 160–164.

    Google Scholar 

  50. V. A. Saldin and N. S. Inkina, “Foundation time of the northern Uralian foredeep,” in Proceedings of the Conference “Geodynamics, Substance, and Ore Genesis of the East European Platform and Its Folded Framing,” Syktyvkar, Russia,2017 (Inst. Geol. Komi Nauchn. Tsentra Ross. Akad. Nauk, Syktyvkar, 2017), pp. 188‒190.

  51. V. A. Skorobogatov, A. V. Stroganov, and V. D. Kopeev, Geological Structure and Petroleum Bearing Potential of Yamal (Nedra-Biznestsentr, Moscow, 2003) [in Russian].

    Google Scholar 

  52. A. A. Soboleva, K. V. Kulikova, N. B. Kuznetsov, and A. A. Morgunova, “Pre-Uralides of the Enganepe uplift (Polar Urals),” in Proceedings of the Conference “Lithological Complexes and Problems of Precambrian Geodynamics of the Phanerozoic Orogens,” Yekaterinburg, Russia,2008, Ed. by V. A. Koroteev (Inst. Geol. Geofiz. Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2008), pp. 152–155.

  53. A. A. Soboleva, “On the necessity of subdivision of the Sal’ner-Man’khamba granite‒leucogranite complex, Subpolar and Northern Urals,” in Proceedings of the Conference “Geodynamics, Substance, and Ore Genesis of the East European Platform and Its Folded Framing,” Syktyvkar, Russia,2017 (Inst. Geol. Komi Nauchn. Tsentra Ross. Akad. Nauk, Syktyvkar, 2017), pp. 194–196.

  54. I. D. Sobolev, Candidate’s Dissertation in Geology and Mineralogy (Moscow, 2019).

  55. I. D. Sobolev, A. A. Soboleva, O. V. Udoratina, D.  A. Varlamov, J. K. Hourigan, V. B. Khubanov, M. D. Buyantuev, and A. A. Soboleva, “Devonian island-arc magmatism of the Voikar zone in the Polar Urals,” Geotectonics 52, 531–563 (2018).

    Article  Google Scholar 

  56. I. D. Sobolev, A. A. Soboleva, O. V. Udoratina, T. A. Kaneva, K. V. Kulikova, I. V. Vikent’ev, V. B. Khubanov, M. D. Buyantuev, and Dzh. K. Khourigan, “First results of U‒Pb (LA-ICP-MS) dating of detrital zircons from Paleozoic arc detrital rocks of the Polar Urals,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 92 (4), 3‒26 (2017).

    Google Scholar 

  57. Stratigraphic Charts of the Urals (Precambrian and Paleozoic) (Mezhved. Stratigr. Kom. Ross., Yekaterinburg, 1993) [in Russian].

  58. V. S. Surkov and L. V. Smirnov, “Structure and petroleum potential of the basement of the West Siberian Plate,” Otechestvennaya Geol., No. 1, 10–16 (2003).

  59. V. S. Surkov and L. V. Smirnov, “Consolidated crustal blocks in the basement of the West Siberian Plate,” in Proceedings of the Conference “Basement and Framing Structures of the West Siberian Mesozoic–Cenozoic Sedimentary Basin: Their Geodynamic Evolution and Problems of Petroleum-Bering Potential,”Tyumen, Russia, 2008 (Sib. Nauchno-Anal. Tsentr, Tyumen, 2008), pp. 207–210.

  60. Tectonic History of the Polar Urals, Vol. 531 of Tr. Geol. Inst. Ross. Akad. Nauk (Nauka, Moscow, 2001) [in Russian].

  61. Timan–Pechora Sedimentary Basin: Atlas of Geological Maps (Reg. Dom Pechati, Ukhta, 2000) [in Russian].

  62. A. N. Ugryumov and V. N. Voronov, “On the problem of stratigraphic subdivision of the basement of the West Siberian Plate inferred from the Yangiyugan parametric well,” Gorn. Vedomosti 71 (6), 34‒48 (2014).

    Google Scholar 

  63. N. G. Udovkina, Eclogites of the USSR (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  64. N. S. Ulyasheva, “Thermodynamic evolution of metamorphism for the Kharbei complex rocks (Polar Urals),” Vestn. Inst. Geol. Komi Nauchn. Tsentra Ross. Akad. Nauk, No. 9, 2‒6 (2011).

    Google Scholar 

  65. N. S. Ulyasheva, “Composition and formation conditions of the protoliths for plagiogneisses in the Kharbei metamorphic complex (Polar Urals),” Vestn. Inst. Geol. Komi Nauchn. Tsentra Ross. Akad. Nauk, No. 9, 14‒19 (2013).

    Google Scholar 

  66. N. S. Ulyasheva, A. M. Pystin, A. V. Panfilova, and I. L. Potapov, “Two series of primary magmatic rocks in the Marunkeu eclogite-gneiss complex,” Vestn. Inst. Geol. Komi Nauchn. Tsentra Ross. Akad. Nauk, No. 11, 3–12 (2015).

    Google Scholar 

  67. N. S. Ulyasheva, A. M. Pystin, Yu. I. Pystina, O. V. Grakova, and V. B. Khubanov, “U‒Pb LA-SF-ICP-MS dating of detrital zircons from Upper Proterozoic deposits of the Polar Urals,” inProceedings of the Conference “Geodynamics, Substance, and Ore Genesis of the East European Platform and Its Folded Framing,” Syktyvkar, Russia, 2017 (Inst. Geol. Komi Nauchn. Tsentra Ross. Akad. Nauk, Syktyvkar, 2017), pp. 223–225.

  68. G. B. Fershtater, P. Montero, and F. Bea, “Age of zircon from apoharzburgite serpentinite representing mantle of the Uralian paleoocean,” Geochem. Int. 55, 675‒682 (2017).

    Article  Google Scholar 

  69. L. T. Belyakova, V. I. Bogatskii, B. P. Bogdanov, E. G. Dovzhikova, and V. M. Laskin, Basement of the Timan–Pechora Petroleum Basin, Ed. by E. G. Dovzhikova and A. M. Plyakin (Kirov. Obl. Tipografiya, Kirov, 2008) [in Russian].

    Google Scholar 

  70. E. V. Khain, E. B. Sal’nikova, A. B. Kotov, K.-P. Burgath, A. A. Fedotova, V. P. Kovach, S. Z. Yakovleva, D. N. Remizov, and F. Schaefer, “ U-Pb age of plagiogranites from the ophiolite association in the Voykar-Synya Massif, Polar Urals,” Dokl. Earth Sci. 419, 392–396 (2008).

    Article  Google Scholar 

  71. V. G. Khromykh and S. Yu. Belyaev, “Devonian reefs of the eastern slope of the Polar Urals,” Litosfera, No. 2, 25–34 (2010).

    Google Scholar 

  72. V. S. Shatskii, V. A. Simonov, E. Jagoutz, O. A. Koz’menko, and S. A. Kurenkov, “New data on the age of eclogites from the Polar Urals,” Dokl. Earth Sci. 371, 534–538 (2000).

    Google Scholar 

  73. M. A. Shishkin, I. M. Malykh, D. I. Matukov, and S. A. Sergeev, “Rhyolite complexes of the western slope of the Polar Urals,” in Geology and Mineral Resources of the Northeastern European Part of Russia, Ed. by A. M. Pystin (Geoprint, Syktyvkar, 2004), vol. 2, pp. 148–150.

    Google Scholar 

  74. V. V. Yudin, Orogeny in the North Urals and Pay-Khoy (Nauka, Yekaterinburg, 1994) [in Russian].

    Google Scholar 

  75. R. G. Yazeva and V. V. Bochkarev, Voikar Volcanoplutonic Belt of the Polar Urals (Ural. Nauchn. Tsentr Akad. Nauk SSSR, Sverdlovsk, 1984) [in Russian].

    Google Scholar 

  76. M. Beckholmen and J. Glodny, “Timanian blueschist-facies metamorphism in the Kvarkush metamorphic basement, Northern Urals, Russia,” in The Neoproterozoic Timanide Orogen of Eastern Baltica, Vol. 30 of Geol. Soc. London, Mem., Ed. by D. G. Gee and V. L. Pease (London, 2004), pp. 125–134.

  77. Y. Cherepanova, I. M. Artemieva, H. Thybo, and Z. Chemia, “Crustal structure of the Siberian craton and the West Siberian basin: An appraisal of existing seismic data,” Tectonophysics 609, 154–183 (2013).

    Article  Google Scholar 

  78. R. L. Edwards and C. J. Wasserburg, “The age and the emplacement of obducted oceanic crust in the Urals from Sm-Nd systematics,” Earth Planet. Sci. Lett. 72, 389–404 (1985).

    Article  Google Scholar 

  79. J. Glodny, H. Austrheim, and J. F. Molina, “Rb-Sr record of fluid-rock interactionin eclogites of the Marun-Keu complex, Polar Urals, Russia,” Geochim. Cosmochim. Acta 67, 4353–4371 (2003).

    Article  Google Scholar 

  80. J. Glodny, V. L. Pease, and P. Montero, “Protolith ages of eclogites, Marun-Keu Complex, Polar Urals, Russia: implications for the pre- and Early Uralian evolution of the northeastern European continental margin,” in The Neoproterozoic Timanide Orogen of Eastern Baltica, Vol. 30 of Geol. Soc. London, Mem., Ed. by D. G. Gee and V. L. Pease (London, 2004), pp. 87–105.

  81. M. Gopon, A. P. Willner, J. Glodny, V. N. Puchkov, and H.-P. Schertl, “Late Neoproterozoic (Ediacaran) metamorphism at the transition from eclogite to amphibolite facies in the Beloretzk Complex, SW-Urals, Russia,” International Eclogite Conference, Petrozavodsk, Russia, 2019 (Inst. Geol. Karel. Sci. Cent. Russ. Acad. Sci., Petrozavodsk, 2019), p. 37.

  82. E. V. Khain, E. V. Bibikova, E. B. Salnikova, A. Kröner, A. S. Gibsher, A. N. Didenko, K. E Degtyarev, and A. A. Fedotova, “The Palaeo-Asian ocean in the Neoproterozoic and Early Paleozoic: New geochronologic data and paleotectonic reconstructions,” Precambrian Res. 122, 329–358 (2003).

    Article  Google Scholar 

  83. A. V. Kolesnikov, V. V. Marusin, K. E. Nagovitsin, A. V. Maslov, and D. V. Grazhdankin, “Ediacaran biota in the aftermath of the Kotlinian Crisis: Asha Group of the South Urals,” Precambrian Res. 263, 59−78 (2015).

    Article  Google Scholar 

  84. V. Pease, E. Dovszhikova, L. Beliakova, and D. Gee, “Late Neoproterozoic granitoid magmatism in the Pechora Basin basement, NW Russia: Geochemical constraints indicate westward subduction beneath NE Baltica,” in The Neoproterozoic Timanide Orogen of Eastern Baltica, Vol. 30 of Geol. Soc. London, Mem., Ed. by D. G. Gee and V. L. Pease (London, 2004), pp. 75–85.

  85. A. Perez–Estaun, J. Alvarez–Marron, D. Brown, V.   Puchkov, Y. Gorozhanina, and V. Baryshev, “Along-strike structural variations in the foreland thrust and fold belt of the Southern Urals,” Tectonophysics 276, 265–280 (1997).

    Article  Google Scholar 

  86. V. N. Puchkov, A. A. Krasnobaev, and N. D. Sergeeva, “The new data on stratigraphy of the Riphean Stratotype in the Southern Urals, Russia,” J. Geosci. Environ. Prot. 2, 108–116 (2014).

    Google Scholar 

  87. J. H. Scarrow, V. Pease, C. Fleutelot, and V. Dushin, “The Late Neoproterozoic Enganepe ophiolite, Polar Urals: An extension of the Cadomian arc?,” Precambrian Res. 110, 255–275 (2001).

    Article  Google Scholar 

  88. M. Sharma, G. J. Wasserburg, and D. A. Papanastassiou, “High 143Nd/144Nd in extremely depleted mantle rocks,” Earth Planet. Sci. Lett. 135, 101–114 (1995).

    Article  Google Scholar 

  89. M. A. Smethurst, A. N. Khramov, and T. H. Torsvik, “The Neoproterozoic and Palaeozoic palaeomagnetic data for the Siberian Platform: From Rodinia to Pangea,” Earth-Sci. Rev. 43, 1–24 (1998).

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 18-05-70 016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Puchkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puchkov, V.N., Ivanov, K.S. Tectonics of the Northern Urals and Western Siberia: General History of Development. Geotecton. 54, 35–53 (2020). https://doi.org/10.1134/S0016852120010100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120010100

Keywords:

Navigation