Skip to main content
Log in

Synchronization of Variations in Geomagnetic Field Intensity with Eustatic Cycles and Bursts of Magmatism Intensification in the Cretaceous–Early Paleogene

  • Published:
Geotectonics Aims and scope

Abstract

The relationship between cyclic processes in the core and lithosphere in the Middle Jurassic–Paleogene (167–22 Ma) was investigated. The dynamics of cyclic processes was associated with paleointensity behavior and sea level. It is shown that variations in paleointensity and ocean level are two broadband oscillatory processes. The characteristic times of variations in geomagnetic and eustatic processes changed in different geologic ages. We discovered synchronization of variations in geomagnetic and eustatic processes that occurred in the Cretaceous–Early Paleogene (125–40 Ma) based on a spectral analysis of paleointensity and sea level data. The characteristic times of coherent variations in paleointensity and global ocean level ranged from 1 to 16 Ma. Possible reasons for the synchronization of geomagnetic and lithospheric processes have been identified. Features of geomagnetic and lithospheric processes in the interval of 125–40 Ma, expressed as sharp increases in the amplitudes of paleointensity variations and activation of magmatic effusive processes, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. I. Braginskii and V. M. Fishman, “Electromagnetic interaction between the core and mantle at electrical conductivity layer concentrated near the mantle–core boundary,” Geomagn. Aeron. 16, 907–913 (1976).

    Google Scholar 

  2. A. Yu. Guzhikov and E. J. Baraboshkin, “Assessment of diachronism of biostratigraphic boundaries by magnetochronological calibration of zonal scales for the Lower Cretaceous of the Tethyan and Boreal belts,” Dokl. Earth Sci. 409, 843‒846 (2006).

    Article  Google Scholar 

  3. A. N. Didenko, “Possible causes of quasiperiodic variations in geomagnetic reversal frequency and 87Sr/86Sr ratios in marine carbonates through the Phanerozoic,” Russ. Geol. Geophys. 52, 1530‒1538 (2011).

    Article  Google Scholar 

  4. N. L. Dobretsov, “Mantle superplumes as a cause of the main geological periodicity and global reorganizations,” Dokl. Earth Sci. 357, 1316‒1319 (1997).

    Google Scholar 

  5. Yu. D. Kalinin and V. M. Kiselev, “Solar forcing of changes in daytime length, terrestrial seismicity, and geomagnetic moment,” Geomagn. Aeron. 16, 858–861 (1976).

    Google Scholar 

  6. V. M. Kiselev, Rotation of the Earth since the Archean until Today: A Monograph (Sib. Fed. Univ., Krasnoyarsk, 2015) [in Russian].

    Google Scholar 

  7. A. Yu. Kurazhkovskii, N. A. Kurazhkovskaya, and B. I. Klain, “Variations in the geomagnetic field intensity with characteristic times of five and one million years,” Geomagn. Aeron. 59, 249–255 (2019).

    Article  Google Scholar 

  8. E. E. Milanovskii, “The correlation between higher frequency phases of geomagnetic reversals, drops in sea level, and crustal compressive deformations in the Mesozoic and Cenozoic,” Geotectonics 30, 1–8 (1996).

    Google Scholar 

  9. G. N. Petrova, D. M. Pechersky, and A. N. Khramov, “Paleomagnetology is the science of the 21th century,” Izv., Phys. Solid Earth 36, 777–798 (2000).

    Google Scholar 

  10. M. Yu. Reshetnyak, “Spatial spectra of the geomagnetic field in the observations and geodynamo models,” Izv., Phys. Solid Earth 51, 354–361 (2015).

    Article  Google Scholar 

  11. M. Yu. Reshetnyak and V. E. Pavlov, “Evolution of the dipole geomagnetic field. Observations and models,” Geomagn. Aeron. 56, 110–124 (2016).

    Article  Google Scholar 

  12. A. N. Romashov, Planet Earth: Tectonophysics and Evolution (URSS, Moscow, 2003) [in Russian].

    Google Scholar 

  13. N. I. Seliverstov, “Global variations in the sea level and Quaternary volcanism,” Vulkanol. Seismol., No. 5, 22–31 (2001).

  14. D. D. Sokoloff, “Geodynamo and models of geomagnetic field generation: A review,” Geomagn. Aeron. 44, 533‒542 (2004).

    Google Scholar 

  15. O. G. Sorokhtin, Dzh. V. Chilingar, and N. O. Sorokhtin, Theory of the Earth’s Evolution: Origin, Evolution, and Tragic Future (Inst. Komp’yut. Issled. Nauchno-Issled. Tsentra Regulyarnaya Khaotichnaya Dinamika, Moscow, 2010) [in Russian].

    Google Scholar 

  16. V. G. Trifonov and S. Yu. Sokolov, “Comparison of tectonic phases and geomagnetic reversals in the Late Mesozoic and Cenozoic,” Her. Russ. Acad. Sci. 88, 37–43 (2018).

    Article  Google Scholar 

  17. V. P. Trubitsyn, “Thermochemical convection in the mantle with oceanic crust recirculation,” Izv., Phys. Solid Earth 46, 922–930 (2010).

    Article  Google Scholar 

  18. A. N. Khramov, G. I. Goncharov, R. A. Komissarova, S. A. Pisarevskii, I. A. Pogarskaya, Yu. S. Rzhevskii, V. P. Rodionov, and I. A. Slautsitais, Paleomagnitology (Nedra, Leningrad, 1982) [in Russian].

    Google Scholar 

  19. N. M. Chumakov, “Factors of global climatic changes inferred from geological data,” Stratigr. Geol. Correl. 13, 221–241 (2005).

    Google Scholar 

  20. A. J. Biggin, A. McCormack, and A. Roberts, “Paleointensity database updated and upgraded,” EOS, Trans., Am. Geophys. Union 91, 15 (2010).

    Article  Google Scholar 

  21. F. M. Gradstein, G. J. Ogg, and M. van Kranendonk, “On the Geologic Time Scale 2008,” Newslett. Stratigr. 43, 5–13 (2008).

    Article  Google Scholar 

  22. A. Yu. Kurazhkovskii, N. A. Kurazhkovskaya, and B. I. Klain, “Calibration of geomagnetic paleointensity data based on redeposition of sedimentary rocks,” Phys. Earth Planet. Inter. 189, 109‒116 (2011).

    Article  Google Scholar 

  23. R. L. Larson and P. Olson, “Mantle plumes control magnetic reversal frequency,” Earth Planet. Sci. Lett. 107, 437–447 (1991).

    Article  Google Scholar 

  24. C. Ohneiser, G. Acton, J. E. T. Channell, G. S. Wilson, Y. Yamamoto, and T. Yamazaki, “A middle Miocene relative paleointensity record from the Equatorial Pacific,” Earth Planet. Sci. Lett. 374, 227–238 (2013).

    Article  Google Scholar 

  25. M. G. Rochester, “Core-mantle interactions: Geophysical and astronomical consequences,” and Earthquake Displacement Fields and the Rotation of the Earth, Vol. 20 of Astrophys. Space Sci. Lib., Ed. by L. Mansinha, D. E. Smylie, and A. E. Beck (Reidel, Dordrecht, 1970), pp. 136–148.

  26. J. W. Snedden and C. Liu, “A Compilation of the Phanerozoic sea-level change, coastal onlaps and recommended sequence designations,” AAPG Search and Discovery Article #40594 (2010). http://www. se-archanddiscovery.com/documents/2010/40594snedden/ ndx_snedden.pdf. Accessed February 28, 2016.

  27. Y. Yamamoto, T. Yamazaki, G. D. Acton, C. Richter, E. P. Guidry, and C. Ohneiser, “Palaeomagnetic study of IODP Sites U1331 and U1332 in the equatorial Pacific‒extending relative geomagnetic palaeointensity observations through the Oligocene and into the Eocene,” Geophys. J. Int. 196, 694–711 (2014).

    Article  Google Scholar 

  28. Absolute Paleointencity (PINT) Database. (Univ. Liverpool, U.K.), Sci. Environment (NERC). http:// earth.liv.ac.uk/pint/. Accessed May 26, 2016.

  29. MATLAB, Wavelet Toolbox Documentation. https:// www.mathworks.com/help/wavelet/index.html?s_tid= CRUX_lftnav. Accessed December 17, 2018.

Download references

Funding

This study was carried out with the financial support of state task no. 0144-2014-00116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kurazhkovskii.

Additional information

Translated by E. Murashova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurazhkovskii, A.Y., Kurazhkovskaya, N.A. & Klain, B.I. Synchronization of Variations in Geomagnetic Field Intensity with Eustatic Cycles and Bursts of Magmatism Intensification in the Cretaceous–Early Paleogene. Geotecton. 54, 68–74 (2020). https://doi.org/10.1134/S0016852120010070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120010070

Keywords

Navigation