Skip to main content
Log in

Role of velocity induced coherent population oscillation in saturated fluorescence spectroscopy

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper we present a theoretical framework to identify the role of coherent population oscillation (CPO) in saturated fluorescence spectroscopy in a two-level system which is a very useful spectroscopic technique for weak transitions. The fluorescence dip in a fluorescence spectra is generally explained as a saturation effect. However in this work, we find that the Doppler-free dip in a fluorescence spectra is due to saturation effect and CPO effect. The fluorescence dip is further modified by Doppler averaging and its linewidth and dip height are dependent on the temperature of the atomic gas and the applied laser beam intensity. For an atomic beam, the shift of the fluorescence dip from the line center is dependent on the average velocity of the atomic beam and the misalignment of the laser beams with respect to the atomic beam.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Demtroder, Laser Spectroscopy (Springer, 1998).

  2. V. Natarajan, Modern Atomic Physics (CRC Press, 2015).

  3. D. Das, V. Natarajan, J. Phys. B: At. Mol. Opt. Phys. 39, 2013 (2006).

    Article  ADS  Google Scholar 

  4. J.J. McFerran, J. Opt. Soc. Am. B 33, 1278 (2016).

    Article  ADS  Google Scholar 

  5. A. Banerjee, V. Natarajan, Opt. Lett. 28, 1912 (2003).

    Article  ADS  Google Scholar 

  6. D. Das, V. Natarajan, Eur. Phys. J. D 37, 313 (2006).

    Article  ADS  Google Scholar 

  7. A. Marsman, E.A. Hessels, M. Horbatsch, Phys. Rev. A 89, 043403 (2014).

    Article  ADS  Google Scholar 

  8. I. Courtillot, A. Quessada-Vial, A. Brusch, D. Kolker, G.D. Rovera, P. Lemonde, Eur. Phys. J. D 33, 161 (2005).

    Article  ADS  Google Scholar 

  9. C.Y. She, J.R. Yu, Appl. Opt. 34, 1063 (1995).

    Article  ADS  Google Scholar 

  10. T. Yang, K. Pandey, M.S. Pramod, F. Leroux, C.C. Kwong, E. Hajiyev, Z.Y. Chia, B. Fang, D. Wilkowski, Eur. Phys. J. D 69, 226 (2015).

    Article  ADS  Google Scholar 

  11. M.S. Feld, M.M. Burns, T.U. Kühl, P.G. Pappas, D.E. Murnick, Opt. Lett. 5, 79 (1980).

    Article  ADS  Google Scholar 

  12. D.A. Smith, I.G. Hughes, Am. J. Phys. 72, 631 (2004).

    Article  ADS  Google Scholar 

  13. H.R. Noh, Eur. J. Phys. 30, 1181 (2009).

    Article  Google Scholar 

  14. G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G. Tino, Phys. Rev. Lett. 91, 243002 (2003).

    Article  ADS  Google Scholar 

  15. K. Pandey, A.K. Singh, P.V.K. Kumar, M.V. Suryanarayana, V. Natarajan, Phys. Rev. A 80, 022518 (2009).

    Article  ADS  Google Scholar 

  16. L. Hui, G. Feng, Y.B. Wang, X. Tian, J. Ren, B.Q. Lu, Q.F. Xu, Y.L. Xie, H. Chang, Chin. Phys. B 24, 013201 (2015).

    Article  ADS  Google Scholar 

  17. P.E. Atkinson, J.S. Schelfhout, J.J. McFerran, Phys. Rev. A 100, 042505 (2019).

    Article  ADS  Google Scholar 

  18. M. Mrozek, A.M. Wojciechowski, D.S. Rudnicki, J. Zachorowski, P. Kehayias, D. Budker, W. Gawlik, Phys. Rev. B 94, 035204 (2016).

    Article  ADS  Google Scholar 

  19. P. Kumar, A.K. Singh, V. Bharti, V. Natarajan, K. Pandey, J. Phys. B: At. Mol. Opt. Phys. 51, 035502 (2018).

    Article  ADS  Google Scholar 

  20. T. Lauprêtre, S. Kumar, P. Berger, R. Faoro, R. Ghosh, F. Bretenaker, F. Goldfarb, Phys. Rev. A 85, 051805 (2012).

    Article  ADS  Google Scholar 

  21. P. Neveu, M.A. Maynard, R. Bouchez, J. Lugani, R. Ghosh, F. Bretenaker, F. Goldfarb, E. Brion, Phys. Rev. Lett. 118, 073605 (2017).

    Article  ADS  Google Scholar 

  22. E. Baldit, K. Bencheikh, P. Monnier, J.A. Levenson, V. Rouget, Phys. Rev. Lett. 95, 143601 (2005).

    Article  ADS  Google Scholar 

  23. R.W. Boyd, J. Mod. Opt. 56, 1908 (2009).

    Article  ADS  Google Scholar 

  24. G. Piredda, R. Boyd, J. Eur. Opt. Soc. – Rapid Publ. 2, 07004 (2007).

    Article  Google Scholar 

  25. V.S. Zapasski, G.G. Kozlov, Opt. Spectrosc. 100, 419 (2006).

    Article  ADS  Google Scholar 

  26. M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).

    Article  ADS  Google Scholar 

  27. K. Beloy, J.A. Sherman, N.D. Lemke, N. Hinkley, C.W. Oates, A.D. Ludlow, Phys. Rev. A 86, 051404 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanhaiya Pandey.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyakang’o, E.O., Pandey, K. Role of velocity induced coherent population oscillation in saturated fluorescence spectroscopy. Eur. Phys. J. D 74, 96 (2020). https://doi.org/10.1140/epjd/e2020-100519-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100519-0

Keywords

Navigation