Skip to main content
Log in

Simultaneous approximation to values of the exponential function over the adeles

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that Hermite’s approximations to values of the exponential function at given algebraic numbers are nearly optimal when considered from an adelic perspective. We achieve this by taking into account the ratio of these values whenever they make sense in the various completions (Archimedean or p-adic) of a number field containing these algebraic numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ayarai, S., Dubuc, S.: La formule de Cauchy sur la longueur d’une courbe. Can. Math. Bull. 40, 3–9 (1997)

    Article  MathSciNet  Google Scholar 

  2. Baker, A.: On some Diophantine inequalities involving the exponential function. Can. J. Math. 17, 616–626 (1965)

    Article  MathSciNet  Google Scholar 

  3. Baker, A.: Transcendental Number Theory. Cambridge University Press, London (1975)

  4. Bombieri, E., Vaaler, J.: On Siegel’s lemma. Invent. Math. 73, 11–32 (1983)

    Article  MathSciNet  Google Scholar 

  5. Brownawell, W.D.: Some remarks on semi-resultants. In: A. Baker, D.W. Masser (eds.) Transcendence Theory: Advances and Applications, chap 14. Academic Press, New York (1977)

  6. Bundschuh, P.: Irrationalitätsmaße für \(e^a\), \(a\ne 0\), rational oder Liouville-Zahl. Math. Ann. 192, 229–242 (1971)

  7. Chudnovsky, G.V.: Some analytic methods in the theory of transcendental numbers. In: Mathematical Surveys Monographs, vol. 19, chap 1. American Mathematical Society, Providence, R.I. (1984)

  8. Forster, O.: Lectures on Riemann Surfaces. Graduate Texts in Mathematics, vol. 81. Springer, New York (1981)

  9. Hermite, Ch.: Sur la fonction exponentielle. C. R. Acad. Sci., Paris 77, 18–24, 74–79, 226–233, 285–293 (1873). Œuvres de Charles Hermite, vol. III, Cambridge University Press, 2009, pp. 150–181; also available on the web site http://www.bibnum.education.fr

  10. Mahler, K.: Zur approximation der exponentialfunktion und des logarithmus. Teil I. J. Reine Angew. Math. 166, 118–136 (1932)

    MathSciNet  MATH  Google Scholar 

  11. Mahler, K.: Lectures on transcendental numbers. In: Lecture Notes in Mathematics, vol. 546. Springer, Berlin (1976)

  12. Mcfeat, R.B.: Geometry of numbers in Adele spaces. Dissert. Math. Rozprawy Mat. 88, 1–49 (1971)

  13. Perron, O.: Die Lehre von den Kettenbrüchen. Chelsea, New York (1950) (reprint of the 2nd edn, 1929)

  14. Robba, P.: Lemmes de Schwarz et lemmes d’approximations \(p\)-adiques en plusieurs variables. Invent. Math. 48, 245–277 (1978)

    Article  MathSciNet  Google Scholar 

  15. Schmidt, W.M.: Diophantine approximation. In: Lecture Note in Mathematics, vol. 785. Springer, New York (1980)

  16. Thunder, J.L.: Remarks on adelic geometry of numbers. In: Number Theory for the millennium, vol. III (Urbana, IL, 2000), pp. 253–259. A K Peters (2002)

  17. Waldschmidt, M.: An introduction to irrationality and transcendence methods. In: Lecture 2, 2008 Arizona Winter School. https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/AWSLecture2.pdf

  18. Weierstrass, K.: Zu Lindemann’s Abhandlung “Über die Ludolph’sche Zahl”. Berl. Ber. 1067–1086 (1885)

Download references

Acknowledgements

I warmly thank Michel Waldschmidt for numerous exchanges on these questions. In particular, his course notes [17] were a source of inspiration. I also thank the referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Roy.

Additional information

Communicated by Kannan Soundararajan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by NSERC (discovery grant).

Appendix A. Recurrence relations

Appendix A. Recurrence relations

The notation being as in Sect. 2.2 we extend the definition of \(f_{\mathbf {n}}(z)\), \(P_{\mathbf {n}}(z)\) and \(a_{\mathbf {n}}\) to any s-tuple \({\mathbf {n}}\in {\mathbb {Z}}^s\) by setting

$$\begin{aligned} f_{\mathbf {n}}(z)=P_{\mathbf {n}}(z)=0 \quad \text {and}\quad a_{\mathbf {n}}=(0,\dots ,0) \quad \text {if}\quad {\mathbf {n}}\notin {\mathbb {N}}^s. \end{aligned}$$

For each \({\mathbf {n}}\in {\mathbb {N}}_+^s\), we denote by \(A_{\mathbf {n}}\) the matrix whose \(\ell \)th row is \({\mathbf {a}}_{{\mathbf {n}}-{\mathbf {e}}_\ell }\) for \(\ell =1,\dots ,s\). In [9, Sect. IX–X], Hermite provides a recurrence formula linking \(A_{{\mathbf {n}}+{\mathbf {1}}}\) to \(A_{\mathbf {n}}\) where \({\mathbf {1}}=(1,\dots ,1)\). Here we give more general recurrence relations based on the same principle. The formula (A.1) below is due to Hermite [9, Sect. IX, p. 230] when \({\mathbf {n}}\in {\mathbb {N}}_+^s\).

Proposition A.1

Let \({\mathbf {n}}=(n_1,\dots ,n_s)\in {\mathbb {N}}^s\). We have

$$\begin{aligned} a_{\mathbf {n}}= (f_{\mathbf {n}}(\alpha _1),\dots ,f_{\mathbf {n}}(\alpha _s)) + \sum _{j=1}^s n_ja_{{\mathbf {n}}-{\mathbf {e}}_j}\,. \end{aligned}$$
(A.1)

Moreover, if \(k,\ell \in \{1,\dots ,s\}\) with \(n_k\ge 1\), we also have

$$\begin{aligned} a_{{\mathbf {n}}+{\mathbf {e}}_\ell -{\mathbf {e}}_k} = a_{\mathbf {n}}+ (\alpha _k-\alpha _\ell )a_{{\mathbf {n}}-{\mathbf {e}}_k}. \end{aligned}$$
(A.2)

Proof

Leibniz formula for the derivative of a product gives

$$\begin{aligned} f_{\mathbf {n}}'(z)=\sum _{j=1}^s n_j f_{{\mathbf {n}}-{\mathbf {e}}_j}(z). \end{aligned}$$

Taking the sum of all derivatives on both sides of this equality, we obtain

$$\begin{aligned} P_{\mathbf {n}}(z)=f_{\mathbf {n}}(z)+\sum _{j=1}^s n_j P_{{\mathbf {n}}-{\mathbf {e}}_j}(z) \end{aligned}$$

and (A.1) follows. The formula (A.2) is trivial if \(k=\ell \). Suppose that \(k\ne \ell \) and \(n_k\ge 1\) so that \({\mathbf {n}}-{\mathbf {e}}_k\in {\mathbb {N}}^s\). Then we find

$$\begin{aligned} f_{{\mathbf {n}}+{\mathbf {e}}_\ell -{\mathbf {e}}_k}(z) - f_{\mathbf {n}}(z) = (z-\alpha _\ell )f_{{\mathbf {n}}-{\mathbf {e}}_k}(z)-(z-\alpha _k)f_{{\mathbf {n}}-{\mathbf {e}}_k}(z) = (\alpha _k-\alpha _\ell )f_{{\mathbf {n}}-{\mathbf {e}}_k}(z). \end{aligned}$$

Taking again the sum of the derivatives, this yields

$$\begin{aligned} P_{{\mathbf {n}}+{\mathbf {e}}_\ell -{\mathbf {e}}_k}(z) = P_{\mathbf {n}}(z) + (\alpha _k-\alpha _\ell )P_{{\mathbf {n}}-{\mathbf {e}}_k}(z) \end{aligned}$$

and (A.2) follows. \(\square \)

Corollary A.2

Let \({\mathbf {n}}=(n_1,\dots ,n_s)\in {\mathbb {N}}_+^s\) and \(\ell \in \{1,\dots ,s\}\). Then we have

$$\begin{aligned} A_{{\mathbf {n}}+{\mathbf {e}}_\ell } = M_{{\mathbf {n}},\ell } A_{\mathbf {n}}\end{aligned}$$

where

$$\begin{aligned} M_{{\mathbf {n}},\ell } =\begin{pmatrix} n_1+(\alpha _1-\alpha _\ell ) &{}\quad n_2 &{}\quad \cdots &{}\quad n_s\\ n_1 &{}\quad n_2+(\alpha _2-\alpha _\ell ) &{}\quad \cdots &{}\quad n_s\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ n_1 &{}\quad n_2 &{}\quad \cdots &{}\quad n_s+(\alpha _s-\alpha _\ell ) \end{pmatrix}. \end{aligned}$$

Proof

As the entries of \({\mathbf {n}}\) are positive, the polynomial \(f_{\mathbf {n}}\) vanishes at all points \(\alpha _1,\dots ,\alpha _s\) and the formulas of Proposition A.1 yield

$$\begin{aligned} a_{{\mathbf {n}}+{\mathbf {e}}_\ell -{\mathbf {e}}_k} = (\alpha _k-\alpha _\ell )a_{{\mathbf {n}}-{\mathbf {e}}_k} + \sum _{j=1}^s n_j a_{{\mathbf {n}}-{\mathbf {e}}_j} \quad (1\le k\le s). \end{aligned}$$

When \(s=2\), this provides a quick way of computing the matrices \(A_{n,n}\).

Corollary A.3

Suppose that \(s=2\), \(\alpha _1=0\) and \(\alpha _2=\alpha \in K{\setminus }\{0\}\). Then, for each \(n\in {\mathbb {N}}_+\), we have

$$\begin{aligned} A_{n,n} = \begin{pmatrix} P_{n-1,n}(0) &{}\quad P_{n-1,n}(\alpha )\\ P_{n,n-1}(0) &{}\quad P_{n,n-1}(\alpha ) \end{pmatrix} = (n-1)! C_nC_{n-1}\cdots C_1 \end{aligned}$$
(A.3)

where

$$\begin{aligned} C_i =\begin{pmatrix} 2i-1-\alpha &{}\quad 2i-1\\ 2i-1 &{}\quad 2i-1+\alpha \end{pmatrix} \quad (i\in {\mathbb {N}}_+). \end{aligned}$$

Proof

We find that \(P_{0,1}(z)=z+1-\alpha \) and \(P_{1,0}(z)=z+1\), thus \(A_{1,1}=C_1\). In general, for an integer \(n\ge 1\), the formulas of the preceding corollary give

$$\begin{aligned} A_{n+1,n+1} = \begin{pmatrix} n &{}\quad n+1\\ n &{}\quad n+1+\alpha \end{pmatrix} \begin{pmatrix} n-\alpha &{}\quad n\\ n &{}\quad n \end{pmatrix} A_{n,n} = n C_{n+1} A_{n,n} \end{aligned}$$

and the conclusion follows by induction on n. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, D. Simultaneous approximation to values of the exponential function over the adeles. Math. Ann. 377, 1057–1093 (2020). https://doi.org/10.1007/s00208-020-02005-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02005-5

Mathematics Subject Classification

Navigation