Skip to main content

Advertisement

Log in

Determination of Pyrolysis Kinetics of Cellulose and Lignin Fractions Isolated from Selected Turkish Biomasses

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The pyrolysis behavior of Turkish biomass samples such as hazelnut shell, almond shell, and sunflower stalk residue was studied using a thermogravimetric analysis (TGA) laboratory-scale setup. Biomass samples were characterized using the standard method of the Van Soest detergent analysis, and both the virgin biomass and fractions were investigated. The reaction temperature was increased to 900 °C with a heating rate range between 2 and 60 °C min−1 in the TGA experiments. Seven solid-state reaction models were applied to evaluate the obtained experimental TGA results. The heating rate was not the only parameter affecting the values of activation energy and the ratio of the main components such as the cellulose and lignin of the virgin biomass samples (almond shell, sunflower stalk, and hazelnut shell) also affected the value of the activated energy values. It was determined that a model fitting mechanism gives limited information to determine the exact activation energy values for the samples. The reaction order model provided straightforward and decisive results for all the biomass and lignin samples. Models of two- and three-dimensional diffusion were better suitable for the cellulose devolatilization. It was also determined that the activation energy of the lignin samples was similar regardless of the types of biomass. According to the kinetic calculations, the cellulose samples showed the highest activation energy values and the lignin samples had the lowest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moreno, M.A.P.; Manzano, E.S.; Moreno, A.J.P.: Biomass as renewable energy. Worldwide research trends. Sustainability 11, 863 (2019)

    Article  Google Scholar 

  2. Nunes, L.J.R.; Causer, T.P.; Ciolkosz, D.: Biomass for energy: a review on supply chain management models. Renew. Sustain. Energy Rev. 120, 109658 (2020)

    Article  Google Scholar 

  3. Kumara, B.; Bhardwaja, N.; Agrawala, K.; Chaturvedib, V.; Vermaa, P.: Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process. Technol. 199, 106244 (2020)

    Article  Google Scholar 

  4. Chena, W.H.; Wanga, C.W.; Ongd, H.C.; Showe, P.L.; Hsiehf, T.H.: Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 258, 116168 (2019)

    Article  Google Scholar 

  5. Qu, T.; Guo, W.; Shen, L.; Xiao, J.; Zhao, K.: Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind. Eng. Chem. Res. 50, 10424–10433 (2011)

    Article  Google Scholar 

  6. Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C.: Characteristics of hemicellulose, cellulose, and lignin pyrolysis. Fuel 86(12–13), 1781–1788 (2007)

    Article  Google Scholar 

  7. Jiang, G.; Nowakowski, D.J.; Bridgwater, A.V.: Effect of the temperature on the composition of lignin pyrolysis products. Energy Fuels 24(8), 4470–4475 (2010)

    Article  Google Scholar 

  8. Ohra-aho, T.; Linnekoski, J.: Catalytic pyrolysis of lignin by using analytical pyrolysis-GC–MS. J Anal Appl Pyrolysis 113, 186–192 (2015)

    Article  Google Scholar 

  9. Hosoya, T.; Kawamoto, H.; Saka, S.: Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J. Anal. Appl. Pyrolysis 80(1), 118–125 (2007)

    Article  Google Scholar 

  10. Waters, C.L.; Janupala, R.R.; Mallinson, R.G.; Lobban, L.L.: Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: an experimental study of residence time and temperature effects. J. Anal. Appl. Pyrolysis 126, 380–389 (2017)

    Article  Google Scholar 

  11. Gai, C.; Dong, Y.; Zhang, T.: The kinetic analysis of the pyrolysis of agriculture residue under non-isothermal conditions. Bioresour. Technol. 127, 298–305 (2013)

    Article  Google Scholar 

  12. Ferdous, D.; Dalai, A.K.; Bej, S.K.; Thring, R.W.: Pyrolysis of lignins: experimental and kinetics studies. Energy Fuels 16, 1405–1412 (2002)

    Article  Google Scholar 

  13. Giuntoli, J.; Arvelakis, S.; Spliethoff, H.; de Jong, W.; Verkooijen, A.H.M.: Quantitative and kinetic thermogravimetric fourier transform infrared (TG-FTIR) study of pyrolysis of agricultural residues: influence of different pretreatments. Energy Fuels 23, 5695–5706 (2009)

    Article  Google Scholar 

  14. Aboulkas, A.; El Harfi, K.; El Bouadili, A.K.; Benchanaa, M.; Mokhlisse, A.; Outzourit, A.: Kinetics of co-pyrolysis of Tarfaya (Morocco) oil shale with high-density polyethylene. Oil Shale 24, 15–33 (2007)

    Google Scholar 

  15. Lin, Y.C.; Cho, J.; Tompsett, G.A.; Westmoreland, P.R.; Huber, G.W.: Kinetics and mechanism of cellulose pyrolysis. J. Phys. Chem. C 113, 20097–20107 (2009)

    Article  Google Scholar 

  16. Lora, J.H.; Glasser, W.G.: Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J. Polym. Environ. 10, 39–48 (2002)

    Article  Google Scholar 

  17. Mani, T.; Murugan, P.; Mahinpey, N.: Determination of distributed activation energy model kinetic parameters using simulated annealing optimization method for nonisothermal pyrolysis of lignin. Ind. Eng. Chem. Res. 48, 1464–1467 (2009)

    Article  Google Scholar 

  18. Brebu, M.; Cazacu, G.; Chirila, O.: Pyrolysis of lignin—a potential method for obtaining chemicals and/or fuels. Cellul. Chem. Technol. 45, 43–50 (2011)

    Google Scholar 

  19. Min, K.: Vapor-phase thermal analysis of pyrolysis products from cellulosic materials. Combust. Flame 30, 285–294 (1977)

    Article  Google Scholar 

  20. Neves, D.; Thunman, H.; Matos, A.; Tarelho, L.: Characterization and prediction of biomass pyrolysis products. Fuel Energy Abstr. 37(5), 611–630 (2011)

    Google Scholar 

  21. Aggarwal, P.; Dollimore, D.; Heon, K.: Comparative thermal analysis study of two biopolymers, starch and cellulose. J. Therm. Anal. 50, 7–17 (1997)

    Article  Google Scholar 

  22. Jun-Ho, J.; Seung-Soo, K.; Jae-Wook, S.; Ye-Eun, L.; Yeong-Seok, Y.: Pyrolysis characteristics and kinetics of food wastes. Energies 10(8), 1191 (2017)

    Article  Google Scholar 

  23. Wu, Z.; Wang, S.; Zhao, J.; Chen, L.; Meng, H.: Pyrolytic behavior and kinetic analysis of wheat straw and lignocellulosic biomass model compound. Adv. Mater. Res. 860–863, 550–554 (2013)

    Google Scholar 

  24. Chan, R.W.; Krieger, B.B.: Kinetics of dielectric-loss microwave degradation of polymers: lignin. J. Appl. Polym. Sci. 26, 1533–1553 (1981)

    Article  Google Scholar 

  25. Nunn, T.R.; Howard, J.B.; Longwell, J.P.; Peters, W.A.: Product compositions and kinetics in the rapid pyrolysis of milled wood lignin. Ind. Eng. Chem. Process Des. Dev. 24, 844–852 (1985)

    Article  Google Scholar 

  26. Caballero, J.A.; Font, R.A.; Marcilla, J.; Conesa, A.: New kinetic model for thermal decomposition of heterogeneous materials. Ind. Eng. Chem. Res. 34(3), 806–812 (1995)

    Article  Google Scholar 

  27. Li, B.; Lv, W.; Zhang, Q.; Wang, T.; Ma, L.: Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: kinetics and products. J. Anal. Appl. Pyrolysis 108, 295–300 (2014)

    Article  Google Scholar 

  28. Caballero, J.A.; Font, R.; Marcilla, A.: Study of the primary pyrolysis of Kraft lignin at high heating rates: yields and kinetics. J. Anal. Appl. Pyrolysis 36, 159–178 (1996)

    Article  Google Scholar 

  29. Jiang, G.; Nowakowski, D.J.; Bridgwater, A.V.: A systematic study of the kinetics of lignin pyrolysis. Thermochim. Acta 498, 61–66 (2010)

    Article  Google Scholar 

  30. Erdogan, C.;, Strossman, C.: Turkey tree nuts annual report. Global Agricultural International Network. Gain Report-TR8029, pp. 1–4 (2018)

  31. Konyalı, S.: Sunflower production, consumption, foreign trade and agricultural policies in Turkey. Soc. Sci. Res. J. 6(4), 11–19 (2017)

    Google Scholar 

  32. VanSoest, P.J.; Robertson, J.B.; Lewis, B.A.: Symposium: carbonhydrate methodology, metabolism and nutritional implications in dairy cattle. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583–3597 (1991)

    Article  Google Scholar 

  33. Kahrizsangi, R.E.; Abbasi, M.H.: Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans. Nonferrous Met. Soc. China 18, 217–221 (2008)

    Article  Google Scholar 

  34. Várhegyi, G.; Antal, J.; Jakab, E.; Szabó, P.: Kinetic modeling of biomass pyrolysis. J. Anal. Appl. Pyrolysis 42, 73–87 (1997)

    Article  Google Scholar 

  35. Yan, R.; Yang, H.P.; Chin, T.; Liang, D.T.; Chen, H.P.; Zheng, C.G.: Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes. Combust. Flame 142, 24–32 (2005)

    Article  Google Scholar 

  36. Worasuwannarak, N.; Sonobe, T.; Tanthapanichakoon, W.: Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J. Anal. Appl. Pyrolysis 78, 265–271 (2007)

    Article  Google Scholar 

  37. Guerrero, M.B.; Beceiro, J.L.; Jiménez, P.E.S.; Cosp, J.P.: Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: cellulose, xylan and lignin. TG-FTIR analysis of volatile products. Thermochim. Acta 581, 70–86 (2014)

    Article  Google Scholar 

  38. Joffres, B.; Laurenti, D.; Charon, N.; Daudin, A.; Quignard, A.; Geantet, C.: Thermochemical conversion of lignin for fuels and chemicals: a review. Oil Gas Sci. Technol. 68, 753–763 (2013)

    Article  Google Scholar 

  39. Jensen, A.; Dam-Johansen, K.; Wójtowicz, M.A.; Serio, M.A.: TG-FTIR study of the influence of potassium chloride on wheat straw pyrolysis. Energy Fuels 12, 929–938 (1998)

    Article  Google Scholar 

  40. Brebu, M.; Vasile, C.: Thermal degradation of lignin—a review. Cellul. Chem. Technol. 44(9), 353–363 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the financial support of The Scientific and Technological Research Council of Turkey (TÜBİTAK) (Project No: 106T748), and we would like to thank the Council of Higher Education (Turkey) for the scholarship. The authors appreciate the Karlsruhe Institute of Technology, for analyzing the elemental composition of the biomass samples. The authors also appreciate the TU Delft/Faculty of 3 mE, Department of P&E for the TGA-FTIR analysis of the biomass samples. Finally, the authors would like to thank Mr. G. Serin for his support in the isolation steps of the biomass samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent Ballice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballice, L., Sert, M., Sağlam, M. et al. Determination of Pyrolysis Kinetics of Cellulose and Lignin Fractions Isolated from Selected Turkish Biomasses. Arab J Sci Eng 45, 7429–7444 (2020). https://doi.org/10.1007/s13369-020-04594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04594-4

Keywords

Navigation