Skip to main content
Log in

Patterns of the Seismic Cycle in the Kuril Island Arc from GPS Observations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The 2006–2007 Simushir earthquakes started a new episode in the rupture history of the Kuril-Kamchatka subduction zone. This earthquake doublet terminated the seismic silence in the Central Kurils, which had lasted for almost a century. The analysis of seismologic, geologic and GPS data over the Kuril Islands region allows us to reveal the patterns of deformation of the lithosphere in the Kuril subduction zone, in particular, the peculiarities of accumulation and relaxation of elastic stresses during the seismic cycle. We analyzed > 9 years of continuous GPS observations on the Kuril Islands to determine the surface displacements caused by the geodynamic processes in the subduction zone. We used available GPS data to model the coseismic stress release and postseismic stress relaxation related to the 2006–2007 Simushir earthquakes. We showed that the duration of postseismic relaxation after the 2006 earthquake exceeds 10 years, preventing transition of the central Kurils to the interseismic stage and thus delaying the beginning of the new seismic cycle. The value of Maxwell viscosity of the asthenosphere found in this study (3 × 1017 Pa s) in the Kuril Island arc is substantially lower than the values determined for several other subduction zones. This contrast in viscosity agrees with Kogan et al. (J Geophys Res 118:3691–3706, 2013), who used shorter GPS time series than in our study. The results of our analysis show that multidirectional motions along the Kurils Islands are explained by the fact that segments of the island arc are at different stages of the seismic cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All the source data and materials used in the article are available in the public repository Figshare: https://figshare.com/articles/Source_data_for_Vladimirova_et_al_2019_Patterns_of_seismic_cycle_in_the_Kuril_Island_arc_from_GPS_observations_Pure_and_Applied_Geophysics/10028582.

Code Availability

A collection of programs GAMIT/GLOBK used for processing of GPS observations may be obtained without written agreement or royalty fee by individuals, universities, and government agencies for any non-commerical purpose at http://geoweb.mit.edu/gg/.

The program package STATIC1D (developed by F.F. Pollitz) used to calculate static displacements from earthquake faulting on a radially stratified model is available at https://www.usgs.gov/software/static1d/.

A program package VISCO1D-v3 (developed by F.F. Pollitz) used to calculate postseismic deformations on a layered spherical Earth from a specified input source is available at https://www.usgs.gov/software/visco1d/.

All figures were plotted using the Generic Mapping Tools (GMT) open-source mapping toolbox, which is developed and maintained by Paul Wessel and Walter H. F. Smith. The GMT software is available at https://www.generic-mapping-tools.org/download/.

References

  • Ammon, C. J., Kanamori, H., & Lay, T. (2008). A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands. Nature, 451(7178), 561–565.

    Article  Google Scholar 

  • Apel, E. V., Burgmann, R., Steblov, G., Vasilenko, N., King, R., & Prytkov, A. (2006). Independent active microplate tectonics of northeast Asia from GPS velocities and block modeling. Geophysical Research Letters, 33, L11303. https://doi.org/10.1029/2006GL026077.

    Article  Google Scholar 

  • Baba, T., Cummins, P. R., Thio, H. K., & Tsushima, H. (2009). Validation and joint inversion of teleseismic waveforms for earthquake source models using deep ocean bottom pressure records: a case study of the 2006 Kuril megathrust earthquake. Pure and Applied Geophysics, 166, 55–76.

    Article  Google Scholar 

  • Baranov, B. V., Ivanchenko, A. I., & Dozorova, K. A. (2015). The Great 2006 and 2007 Kuril Earthquakes, Forearc Segmentation and Seismic Activity of the Central Kuril Islands Region. Pure and Applied Geophysics, 172(12), 3509–3535.

    Article  Google Scholar 

  • Bürgmann, R., & Dresen, G. (2008). Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy and field observations. Annual Review of Earth and Planetary Sciences, 36, 531–567.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101(2), 425–478.

    Article  Google Scholar 

  • Diao, F., Xiong, X., Wang, R., Zheng, Y., Walter, T. R., Weng, H., et al. (2014). Overlapping post-seismic deformation processes: afterslip and viscoelastic relaxation following the 2011 Mw 9.0 Tohoku (Japan) earthquake. Geophysical Journal International, 196, 218–229.

    Article  Google Scholar 

  • Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.

    Article  Google Scholar 

  • Ekström, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002.

    Article  Google Scholar 

  • Engdahl, E. R., & Villaseñor, A. (2002). Global Seismicity: 1900–1999. In W. H. K. Lee, H. Kanamori, P. C. Jennings, & C. Kisslinger (Eds.), International Handbook of Earthquake and Engineering Seismology, Part A, Chapter 41 (pp. 665–690). London: Academic Press.

    Chapter  Google Scholar 

  • Fedotov, S. A. (1965). Regularities of distribution of large earthquakes of Kamchatka, Kuril Islands and North-Eastern Japan. Seismic microzoning. Trans. IFZ AN SSSR, 36, 66–93. (in Russian).

    Google Scholar 

  • Fedotov, S. A. (1968). The seismic cycle, possibility of the quantitative seismic zoning, and long-term seismic forecasting. In S. V. Medvedev (Ed.), Seismic zoning in the USSR (pp. 133–166). Moscow: Nauka. (in Russian).

    Google Scholar 

  • Fedotov, S. A., & Solomatin, A. V. (2017). The long-term earthquake prediction for the Kuril-Kamchatka island arc for the April 2016 through March 2021 period, its modification and application; the Kuril-Kamchatka seismicity before and after the May 24, 2013, M 8.3 deep-focus earthquake in the Sea of Okhotsk. Journal of Volcanology and Seismology, 11(3), 173–186.

    Article  Google Scholar 

  • Freed, A. M. (2007). Afterslip (and only afterslip) following the 2004 Parkfield, California earthquake. Geophysical Research Letters, 34(6), L06312. https://doi.org/10.1029/2006GL029155.

    Article  Google Scholar 

  • Fujii, Y., & Satake, K. (2008). Tsunami sources of the November 2006 and January 2007 great Kuril earthquakes. Bulletin of the Seismological Society of America, 98, 1559–1571. https://doi.org/10.1785/0120070221.

    Article  Google Scholar 

  • Han, S.-C., Sauber, J., & Pollitz, F. (2016). Postseismic gravity change after the 2006–2007 great earthquake doublet and constraints on the asthenosphere structure in the central Kuril Islands. Geophysical Research Letters, 43, 3169–3177. https://doi.org/10.1002/2016GL068167.

    Article  Google Scholar 

  • Herring, T. A., Floyd, M. A., King, R. W., & McClusky, S. C. (2015b). GLOBK, Global Kalman filter VLBI and GPS analysis program, Release 10.6. http://geoweb.mit.edu/gg/GLOBK_Ref.pdf.

  • Herring, T. A., King, R. W., Floyd, M. A., & McClusky, S. C. (2015a). GAMIT Reference Manual, Release 10.6. GPS Analysis at MIT. http://www-gpsg.mit.edu/~simon/gtgk/GAMIT_Ref.pdf.

  • Hu, Y., Wang, K., He, J., Klotz, J., & Khazaradze, G. (2004). Three-dimensional viscoelastic finite element model for post-seismic deformation of the great 1960 Chile earthquake. Journal of Geophysical Research, 109, B12403. https://doi.org/10.1029/2004JB003163.

    Article  Google Scholar 

  • Jonsson, S., Segall, P., Pedersen, R., & Bjornsson, G. (2003). Post-earthquake ground movements correlated to poro-pressure transients. Nature, 424, 179–183.

    Article  Google Scholar 

  • Kaneko, Y., Avouac, J. P., & Lapusta, N. (2010). Towards inferring earthquake patterns from 513 geodetic observations of interseismic coupling. Nature Geoscience, 3(5), 363–369.

    Article  Google Scholar 

  • Kogan, M. G., & Steblov, G. M. (2008). Current global plate kinematics from GPS (1995–2007) with the plate-consistent reference frame. Journal of Geophysical Research, 113, B04416. https://doi.org/10.1029/2007JB005353.

    Article  Google Scholar 

  • Kogan, M. G., Vasilenko, N. F., Frolov, D. I., Freymueller, J. T., Steblov, G. M., Levin, B. W., et al. (2011). The mechanism of postseismic deformation triggered by the 2006–2007 great Kuril earthquakes. Geophysical Research Letters, 38, L06304. https://doi.org/10.1029/2011GL046855.

    Article  Google Scholar 

  • Kogan, M. G., Vasilenko, N. F., Frolov, D. I., Freymueller, J. T., Steblov, G. M., Prytkov, A. S., et al. (2013). Rapid postseismic relaxation after the great 2006–2007 Kuril earthquakes from GPS observations in 2007–2011. Journal of Geophysical Research, 118, 3691–3706. https://doi.org/10.1002/jgrb.50245.

    Article  Google Scholar 

  • Laverov, N. P., Lappo, S. S., Lobkovsky, L. I., Baranov, B. V., Kulinich, R. G., & Karp, B Ya. (2006). The Central Kuril “gap”: structure and seismic potential. Doklady Earth Sciences, 409(5), 787–790.

    Article  Google Scholar 

  • Lay, T., & Kanamori, H. (1981). An asperity model of large earthquake sequences. In D. W. Simpson & P. G. Richards (Eds.), Earthquake prediction: An international review (pp. 579–592). Washington, DC: AGU.

    Google Scholar 

  • Lay, T., Kanamori, H., Ammon, C. J., Hutko, A. R., Furlong, K., & Rivera, L. (2009). The 2006–2007 Kuril Islands great earthquake sequence. Journal of Geophysical Research, 114, B11308. https://doi.org/10.1029/2008JB006280.

    Article  Google Scholar 

  • Lobkovsky, L. I. (2016). Deformable plate tectonics and regional geodynamic model of the Arctic region and Northeastern Asia. Russian Geology and Geophysics, 57(3), 371–386.

    Article  Google Scholar 

  • Lobkovsky, L. I., Kerchman, V. I., Baranov, B. V., & Pristavakina, E. I. (1991). Analysis of seismotectonic processes in subduction zones from the standpoint of a keyboard model of great earthquakes. Tectonophysics, 199, 211–236.

    Article  Google Scholar 

  • Lobkovsky, L. I., Vladimirova, I. S., Gabsatarov, Y. V., Garagash, I. A., Baranov, B. V., & Steblov, G. M. (2017). Post-seismic motions after the 2006–2007 Simushir earthquakes at different stages of the seismic cycle. Doklady Earth Sciences, 473(1), 375–379.

    Article  Google Scholar 

  • Marone, C. J., Scholz, C. H., & Bilham, R. G. (1991). On the mechanics of earthquake afterslip. Journal of Geophysical Research, 96, B5. https://doi.org/10.1029/91JB00275.

    Article  Google Scholar 

  • Mikhailov, V. O., Diament, M., Timoshkina, E. P., & Khairetdinov, S. A. (2018). Assessment of the relative roles of viscoelastic relaxation and postseismic creep in the area of the Simushir earthquake of November 15, 2006, using space geodesy and gravimetry. Moscow University Physics Bulletin, 73(5), 551–557.

    Article  Google Scholar 

  • Peltzer, G., Rosen, P. A., Rogez, P., & Hudnut, K. (1996). Postseismic rebound in fault step-overs caused by pore fluid flow. Science, 273, 1202–1204. https://doi.org/10.1126/science.273.5279.1202.

    Article  Google Scholar 

  • Piersanti, A. (1999). Postseismic deformation in Chile: Constraints on the asthenospheric viscosity. Geophysical Research Letters, 26(20), 3157–3160.

    Article  Google Scholar 

  • Pollitz, F. F. (1996). Coseismic deformation from earthquake faulting on a layered spherical earth. Geophysical Journal International, 125(1), 1–14. https://doi.org/10.1111/j.1365-246X.1996.tb06530.x.

    Article  Google Scholar 

  • Pollitz, F. F. (1997). Gravitational viscoelastic postseismic relaxation on a layered spherical earth. Journal of Geophysical Research, 102, 17921–17941.

    Article  Google Scholar 

  • Pollitz, F. F., Bürgmann, R., & Banerjee, P. (2006). Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth. Geophysical Journal International, 167, 397–420.

    Article  Google Scholar 

  • Pritchard, M. E., & Simons, M. (2006). An aseismic slip pulse in northern Chile and along-strike variations in seismogenic behavior. Journal of Geophysical Research, 111, B08405. https://doi.org/10.1029/2006JB004258.

    Article  Google Scholar 

  • Prytkov, A. S., Vasilenko, N. F., & Frolov, D. I. (2017). Recent geodynamics of the Kuril subduction zone. Russian Journal of Pacific Geology, 11(1), 19–24.

    Article  Google Scholar 

  • Rogozhin, E. A. (2013). Application of tectonophysical approaches to the solution of seismotectonic problems by the example of the Simushir earthquakes of November 15, 2006 and January 13, 2007 in Central Kuriles. Izvestiya. Physics of the Solid Earth, 49(5), 643–652.

    Article  Google Scholar 

  • Rosenau, M., Horenko, I., Corbi, F., Rudolf, M., Kornhuber, R., & Oncken, O. (2019). Synchronization of great subduction megathrust earthquakes: Insights from scale model analysis. Journal of Geophysical Research: Solid Earth, 124(4), 3646–3661.

    Google Scholar 

  • Ruff, L. J. (1992). Asperity distributions and large earthquake occurrence in subduction zones. Tectonophysics, 211, 61–83.

    Article  Google Scholar 

  • Sato, T., Larsen, C. F., Miura, S., Ohta, Y., Fujimoto, H., Sun, W., et al. (2011). Reevaluation of the viscosity of upper mantle beneath southeast Alaska. Tectonophysics, 511, 79–88.

    Article  Google Scholar 

  • Senatorski, P. (2019). Effect of slip-weakening distance on seismic–aseismic slip patterns. Pure and Applied Geophysics, 176, 3975–3992.

    Article  Google Scholar 

  • Steblov, G. M., Grekova, T. A., Vasilenko, N. F., Prytkov, A. S., & Frolov, D. I. (2010). Dynamics of the Kuril-Kamchatka subduction zone from GPS. Izvestiya. Physics of the Solid Earth, 46(5), 440–445.

    Article  Google Scholar 

  • Steblov, G. M., Kogan, M. G., Levin, B. V., Vasilenko, N. F., Prytkov, A. S., & Frolov, D. I. (2008). Spatially linked asperities of the 2006–2007 great Kuril earthquakes revealed by GPS. Geophysical Research Letters, 35, L22306. https://doi.org/10.1029/2008GL035572.

    Article  Google Scholar 

  • Suito, H., & Freymueller, J. T. (2009). A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. Journal of Geophysical Research, 114, B11404. https://doi.org/10.1029/2008JB005954.

    Article  Google Scholar 

  • Tanioka, Y., Hasegawa, Y., & Kuwayama, T. (2008). Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kuril earthquakes. Advances in Geosciences, 14, 129–134.

    Article  Google Scholar 

  • Tarakanov, R. Z., Levyi, N. V., & Kim, Ch U. (1977). The seismicity of the Kuril Region. In S. L. Solov’ev (Ed.), Seismic Zonation of the Kuril Islands, Maritime Territory, and the Amur River Area (pp. 27–35). Vladivostok: DVNC AN SSSR. (in Russian).

    Google Scholar 

  • Vladimirova, I. S., & Steblov, G. M. (2015). Postseismic evolution of the great earthquakes source zones. Geophysical Research, 16(2), 27–38. (in Russian).

    Google Scholar 

  • Vladimirova, I. S., Steblov, G. M., & Frolov, D. I. (2011). Viscoelastic deformations after the 2006–2007 Simushir earthquakes. Izvestiya. Physics of the Solid Earth, 47(11), 1020–1025.

    Article  Google Scholar 

  • Wang, K. (2007). Elastic and viscoelastic models of crustal deformation in subduction zone cycles. In T. H. Dixon & J. C. Moore (Eds.), The seismogenic zone of subduction thrust faults (pp. 540–577). New York: Columbia University Press.

    Google Scholar 

  • Wang, K., Hu, Y., & He, J. (2012). Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature, 484, 327–332.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the state program on the competitiveness enhancement of leading Russian universities among global research and education centers [Moscow Institute of Physics and Technology (MIPT) program “5-100”]. We also thank two anonymous reviewers and the editor for all comments, which contributed to improving the manuscript.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation: the State program on the competitiveness enhancement of leading Russian universities among global research and education centers [Moscow Institute of Physics and Technology (MIPT) program “5-100”].

Author information

Authors and Affiliations

Authors

Contributions

NFV, DIF and ASP performed the measurements, LIL and GMS were involved in planning and supervising the work, LIL developed the theory and conceived the original idea, ISV and YVG processed the observational data and performed the analysis, and ISV carried out numerical simulations and designed the figures. The first draft of the manuscript was written by ISV, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Irina S. Vladimirova.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests regarding the work presented in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vladimirova, I.S., Lobkovsky, L.I., Gabsatarov, Y.V. et al. Patterns of the Seismic Cycle in the Kuril Island Arc from GPS Observations. Pure Appl. Geophys. 177, 3599–3617 (2020). https://doi.org/10.1007/s00024-020-02495-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02495-z

Keywords

Navigation