Skip to main content
Log in

New Insights into the Antimicrobial Properties of Hydrolysates and Peptide Fractions Derived from Chia Seed (Salvia hispanica L.)

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Bioactive peptides derived from chia (Salvia hispanica) seed with antioxidant, antihypertensive, and anti-inflammatory activities have been well documented; however, few studies describe the antimicrobial properties of these peptides, which is of great interest not only in the prevention of food-borne diseases but also food spoilage. The aim of this study was to generate chia seed peptides using microwave-assisted hydrolysis with sequential (alcalase + flavourzyme) enzymes (AF-MW), fractionate them into 3–10 and < 3 kDa fractions, and evaluate their potential antimicrobial activity towards Escherichia coli, Salmonella enterica, and Listeria monocytogenes. Overall, the peptide fraction < 3 kDa showed higher antimicrobial activity than both chia seed hydrolysate and peptide fraction 3–10 kDa. Furthermore, the < 3 kDa fraction showed remarkable increase in membrane permeability of E. coli (71.49% crystal violet uptake) and L. monocytogenes (80.10% crystal violet uptake). These peptides caused a significant extension in the lag phase, decreases in the maximum growth, and growth rate in the bacteria and promoted multiple indentations (transmembrane tunnels), membrane wrinkling, and pronounced deformations in the integrity of the bacterial cell membranes. Finally, a select group of peptides in the AF-MW < 3 kDa fraction contained 16 sequences with cationic and hydrophobic character, with seven of them sharing the exact same sequence (GDVIAIR) and eight of them having the amino acid K as either N- or C-terminal or both. In conclusion, our results indicate that bioactive peptides obtained from chia seed proteins by microwave and enzymatic hydrolysis could be employed as antimicrobial agents in foods and therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zettel V, Hitzmann B (2018) Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci Technol 80:43–50. https://doi.org/10.1016/j.tifs.2018.07.011

    Article  CAS  Google Scholar 

  2. Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A (2019) The chemical composition and nutritional value of chia seeds - current state of knowledge. Nutrients 11(6):1242

    Article  Google Scholar 

  3. Melo D, Machado TB, Oliveira MBPP (2019) Chia seeds: an ancient grain trending in modern human diets. Food Funct 10(6):3068–3089. https://doi.org/10.1039/C9FO00239A

    Article  CAS  Google Scholar 

  4. Grancieri M, Martino HSD, Gonzalez de Mejia E (2019) Digested total protein and protein fractions from chia seed (Salvia hispanica L.) had high scavenging capacity and inhibited 5-LOX, COX-1-2, and iNOS enzymes. Food Chem 289:204–214. https://doi.org/10.1016/j.foodchem.2019.03.036

    Article  CAS  Google Scholar 

  5. Cotabarren J, Rosso AM, Tellechea M, García-Pardo J, Rivera JL, Obregón WD, Parisi MG (2019) Adding value to the chia (Salvia hispanica L.) expeller: production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with papain. Food Chem 274:848–856. https://doi.org/10.1016/j.foodchem.2018.09.061

    Article  CAS  Google Scholar 

  6. Urbizo-Reyes U, San Martin-González MF, Garcia-Bravo J, López Malo Vigil A, Liceaga AM (2019) Physicochemical characteristics of chia seed (Salvia hispanica) protein hydrolysates produced using ultrasonication followed by microwave-assisted hydrolysis. Food Hydrocoll 97:105187. https://doi.org/10.1016/j.foodhyd.2019.105187

    Article  CAS  Google Scholar 

  7. Valdivia-López MÁ, Tecante A (2015) Chapter two - chia (Salvia hispanica): a review of native mexican seed and its nutritional and functional properties. In: Henry J (ed) Advances in Food and Nutrition Research, vol 75. Academic Press, pp 53–75. https://doi.org/10.1016/bs.afnr.2015.06.002

  8. López DN, Galante M, Raimundo G, Spelzini D, Boeris V (2019) Functional properties of amaranth, quinoa and chia proteins and the biological activities of their hydrolyzates. Food Res Int 116:419–429. https://doi.org/10.1016/j.foodres.2018.08.056

    Article  CAS  Google Scholar 

  9. Wang S, Zeng X, Yang Q, Qiao S (2016) Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int J Mol Sci 17(5):603. https://doi.org/10.3390/ijms17050603

    Article  CAS  Google Scholar 

  10. Park S-C, Park Y, Hahm K-S (2011) The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int J Mol Sci 12(9):5971–5992. https://doi.org/10.3390/ijms12095971

    Article  CAS  Google Scholar 

  11. Mousavi Khaneghah A, Hashemi SMB, Limbo S (2018) Antimicrobial agents and packaging systems in antimicrobial active food packaging: an overview of approaches and interactions. Food Bioprod Process 111:1–19. https://doi.org/10.1016/j.fbp.2018.05.001

    Article  CAS  Google Scholar 

  12. Coelho MS, Soares-Freitas RAM, Arêas JAG, Gandra EA, Salas-Mellado MM (2018) Peptides from chia present antibacterial activity and inhibit cholesterol synthesis. Plant Foods Hum Nutr 73(2):101–107. https://doi.org/10.1007/s11130-018-0668-z

    Article  CAS  Google Scholar 

  13. Segura-Campos MR, Salazar-Vega IM, Chel-Guerrero LA, Betancur-Ancona DA (2013) Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. LWT Food Sci Technol 50(2):723–731. https://doi.org/10.1016/j.lwt.2012.07.017

    Article  CAS  Google Scholar 

  14. Izquierdo FJ, Peñas E, Baeza ML, Gomez R (2008) Effects of combined microwave and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. Int Dairy J 18(9):918–922. https://doi.org/10.1016/j.idairyj.2008.01.005

    Article  CAS  Google Scholar 

  15. Ketnawa S, Liceaga AM (2017) Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates. Food Bioprocess Technol 10(3):582–591

    Article  CAS  Google Scholar 

  16. Hall F, Liceaga A (2019) Effect of microwave-assisted enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein on ACE and DPP-IV inhibition and tropomyosin-IgG binding. J Funct Foods 103634. https://doi.org/10.1016/j.jff.2019.103634

  17. Dasari S, Shouri RND, Wudayagiri R, Valluru L (2014) Antimicrobial activity of Lactobacillus against microbial flora of cervicovaginal infections. Asian Pac J Trop Dis 4(1):18–24. https://doi.org/10.1016/S2222-1808(14)60307-8

    Article  Google Scholar 

  18. Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23(3):277–294. https://doi.org/10.1016/0168-1605(94)90157-0

    Article  CAS  Google Scholar 

  19. Xue J, Michael Davidson P, Zhong Q (2015) Antimicrobial activity of thyme oil co-nanoemulsified with sodium caseinate and lecithin. Int J Food Microbiol 210:1–8. https://doi.org/10.1016/j.ijfoodmicro.2015.06.003

    Article  CAS  Google Scholar 

  20. Halder S, Yadav KK, Sarkar R, Mukherjee S, Saha P, Haldar S, Karmakar S, Sen T (2015) Alteration of zeta potential and membrane permeability in bacteria: a study with cationic agents. Springerplus 4:672–672. https://doi.org/10.1186/s40064-015-1476-7

    Article  CAS  Google Scholar 

  21. Strøm MB, Rekdal Ø, Svendsen JS (2002) Antimicrobial activity of short arginine- and tryptophan-rich peptides. J Pept Sci 8(8):431–437. https://doi.org/10.1002/psc.398

    Article  CAS  Google Scholar 

  22. Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K (1991) Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74(12):4137–4142. https://doi.org/10.3168/jds.S0022-0302(91)78608-6

    Article  CAS  Google Scholar 

  23. Malanovic N, Lohner K (2016) Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals (Basel) 9(3):59. https://doi.org/10.3390/ph9030059

    Article  CAS  Google Scholar 

  24. Esmaeilpour M, Ehsani MR, Aminlari M, Shekarforoush S, Hoseini E (2016) Antimicrobial activity of peptides derived from enzymatic hydrolysis of goat milk caseins. Comp Clin Pathol 25(3):599–605. https://doi.org/10.1007/s00580-016-2237-x

    Article  CAS  Google Scholar 

  25. Song W, Kong X, Hua Y, Li X, Zhang C, Chen Y (2020) Antioxidant and antibacterial activity and in vitro digestion stability of cottonseed protein hydrolysates. LWT Food Sci Technol 118:108724. https://doi.org/10.1016/j.lwt.2019.108724

    Article  CAS  Google Scholar 

  26. Kobus-Cisowska J, Szymanowska D, Maciejewska P, Kmiecik D, Gramza-Michałowska A, Kulczyński B, Cielecka-Piontek J (2019) In vitro screening for acetylcholinesterase and butyrylcholinesterase inhibition and antimicrobial activity of chia seeds (Salvia hispanica). Electron J Biotechnol 37:1–10. https://doi.org/10.1016/j.ejbt.2018.10.002

    Article  CAS  Google Scholar 

  27. Sonawane SK, Bhagwat AN, Arya SS (2018) Limonia acidissima and Citrullus lanatus fruit seeds: antimicrobial, thermal, structural, functional and protein identification study. Food Biosci 26:8–14. https://doi.org/10.1016/j.fbio.2018.09.001

    Article  CAS  Google Scholar 

  28. Agyei D, Danquah MK (2011) Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol Adv 29(3):272–277. https://doi.org/10.1016/j.biotechadv.2011.01.001

    Article  CAS  Google Scholar 

  29. Sibel Akalın A (2014) Dairy-derived antimicrobial peptides: action mechanisms, pharmaceutical uses and production proposals. Trends Food Sci Technol 36(2):79–95. https://doi.org/10.1016/j.tifs.2014.01.002

    Article  CAS  Google Scholar 

  30. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395. https://doi.org/10.1038/415389a

    Article  CAS  Google Scholar 

  31. Reddy KVR, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547. https://doi.org/10.1016/j.ijantimicag.2004.09.005

    Article  CAS  Google Scholar 

  32. Park S-C, Kim M-H, Hossain MA, Shin SY, Kim Y, Stella L, Wade JD, Park Y, Hahm K-S (2008) Amphipathic α-helical peptide, HP (2–20), and its analogues derived from Helicobacter pylori: pore formation mechanism in various lipid compositions. Biochim Biophys Acta Biomembr 1778(1):229–241. https://doi.org/10.1016/j.bbamem.2007.09.020

    Article  CAS  Google Scholar 

  33. Song R, Wei RB, Luo HY, Wang DF (2012) Isolation and characterization of an antibacterial peptide fraction from the pepsin hydrolysate of half-fin anchovy (Setipinna taty). Molecules 17(3):2980–2991

    Article  CAS  Google Scholar 

  34. Gao X, Chen Y, Chen Z, Xue Z, Jia Y, Guo Q, Ma Q, Zhang M, Chen H (2019) Identification and antimicrobial activity evaluation of three peptides from laba garlic and the related mechanism. Food Funct 10:4486–4496

    Article  CAS  Google Scholar 

  35. Miao J, Guo H, Chen F, Zhao L, He L, Ou Y, Huang M, Zhang Y, Guo B, Cao Y, Huang Q (2016) Antibacterial effects of a cell-penetrating peptide isolated from Kefir. J Agric Food Chem 64:3234–3242

    Article  CAS  Google Scholar 

  36. Kumar P, Kizhakkedathu JN, Straus SK (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8(1):4. https://doi.org/10.3390/biom8010004

    Article  CAS  Google Scholar 

  37. Torrent M, Andreu D, Nogués VM, Boix E (2011) Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS One 6(2):e16968. https://doi.org/10.1371/journal.pone.0016968

    Article  CAS  Google Scholar 

  38. Umadevi P, Soumya M, George JK, Anandaraj M (2018) Proteomics assisted profiling of antimicrobial peptide signatures from black pepper (Piper nigrum L.). Physiol Mol Biol Plants 24(3):379–389

    Article  CAS  Google Scholar 

  39. Osorio D, Rondón-Villarreal P, Torres R (2015) Peptides: a package for data mining of antimicrobial peptides. R J 7(1):4–14. https://doi.org/10.32614/rj-2015-001

    Article  Google Scholar 

  40. Misawa T, Goto C, Shibata N, Hirano M, Kikuchi Y, Naito M, Demizu Y (2019) Rational design of novel amphipathic antimicrobial peptides focused on the distribution of cationic amino acid residues. Med Chem Commun 10(6):896–900. https://doi.org/10.1039/C9MD00166B

    Article  CAS  Google Scholar 

  41. Shang D, Li X, Sun Y, Wang C, Sun L, Wei S, Gou M (2012) Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, Temporin-1CEb from chinese brown frog, Rana chensinensis. Chem Biol Drug Des 79(5):653–662. https://doi.org/10.1111/j.1747-0285.2012.01363.x

    Article  CAS  Google Scholar 

  42. Beaulieu L, Bondu S, Doiron K, Rioux L-E, Turgeon SL (2015) Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity. J Funct Foods 17:685–697. https://doi.org/10.1016/j.jff.2015.06.026

    Article  CAS  Google Scholar 

  43. Liu Z, Ho CL (2018) The role of proteins and peptides in human microbiome modulation. BAOJ Biotech 4(2):1–4

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank for the technical support from Christopher J. Gilpin, Laurie Mueller, Robert Seiler at the Life Science Microscopy Facility at Purdue University, and from Emma Doud at Proteomics Core Facility at the Indiana University School of Medicine. In addition, the authors express their appreciation to Uriel C. Urbizo Reyes (Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Sciences) and Hansel Mina Cordoba (Food Safety Laboratory, Department of Food Sciences) of Purdue University, for their valuable technical assistance.

Funding

The present work was supported by the USDA-NIFA, Hatch Act formula funds (project 1019794) in the College of Agriculture, Purdue University.

Author information

Authors and Affiliations

Authors

Contributions

A. M. Liceaga contributed to the study conception and design. A. Deering assisted with the bacterial strains used in the study. Material preparation, data collection, and analysis were performed by J.E. Aguilar-Toalá, A. Deering, and A. M. Liceaga. The first draft of the manuscript was written by J.E. Aguilar-Toalá, and all the authors edited and commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to A. M. Liceaga.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 37.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Toalá, J.E., Deering, A.J. & Liceaga, A.M. New Insights into the Antimicrobial Properties of Hydrolysates and Peptide Fractions Derived from Chia Seed (Salvia hispanica L.). Probiotics & Antimicro. Prot. 12, 1571–1581 (2020). https://doi.org/10.1007/s12602-020-09653-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09653-8

Keywords

Navigation