Skip to main content
Log in

Baicalin suppresses the cell cycle progression and proliferation of prostate cancer cells through the CDK6/FOXM1 axis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects and mechanisms of baicalin against prostate cancer cell growth and cell cycle progression. A human prostate cancer cell line LNCaP was engrafted into nude mice, and the oncogenicity of LNCaP cells was analyzed. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay was used to measure LNCaP and PC3 proliferation capability. CDK6 mRNA level was detected using qRT-PCR. Western blotting was performed to assess the levels of cell cycle-associated proteins. In addition, cell cycle and apoptosis were analyzed using flow cytometry. Baicalin significantly decreased the expression of cell cycle-associated proteins. Furthermore, baicalin showed an observable effect on proliferation, cell cycle progression and apoptosis in LNCaP and PC3 cells. Upregulation of CDK6 and FOXM1 reversed the effect of baicalin. CDK6- and FOXM1-mediated cell growth attenuated the protective effect of baicalin in prostate cancer. This study presented an understanding of the role and mechanism of baicalin in prostate cancer cells, providing a new target and therapies for the prevention and treatment of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  2. Boettcher AN, Usman A, Morgans A, VanderWeele DJ, Sosman J, Wu JD (2019) Past, current, and future of immunotherapies for prostate cancer. Front Oncol 9:884. https://doi.org/10.3389/fonc.2019.00884

    Article  PubMed  PubMed Central  Google Scholar 

  3. Justine Yang B, Lang JM, Mcneel DG, Glenn L (2012) Current controversies in the management of biochemical failure in prostate cancer. Clin Adv Hematol Oncol 10:716–722

    Google Scholar 

  4. Shelley M, Harrison C, Coles B, Staffurth J, Wilt TJ, Mason MD (2006) Chemotherapy for hormone-refractory prostate cancer. Cochrane Database Syst Rev 4:CD005247

    Google Scholar 

  5. Kim MM, Hoffman KE, Levy LB, Frank SJ, Pugh TJ, Choi S, Nguyen QN, McGuire SE, Lee AK, Kuban DA (2012) Improvement in prostate cancer survival over time: a 20-year analysis. Cancer J 18:1–8. https://doi.org/10.1097/PPO.0b013e3182467419

    Article  CAS  PubMed  Google Scholar 

  6. Laudicella R, Albano D, Alongi P, Argiroffi G, Bauckneht M, Baldari S, Bertagna F, Boero M, Vincentis G, Sole AD, Rubini G, Fantechi L, Frantellizzi V, Ganduscio G, Guglielmo P, Nappi AG, Evangelista L, on the behalf of Young AWG (2019) (18)F-Facbc in prostate cancer: a systematic review and meta-analysis. Cancers (Basel). https://doi.org/10.3390/cancers11091348

    Article  Google Scholar 

  7. Ren SC, Chen R, Sun YH (2013) Prostate cancer research in China. Asian J Androl 15:350–353. https://doi.org/10.1038/aja.2013.37

    Article  PubMed  PubMed Central  Google Scholar 

  8. Luo Y, Ling Y, Guo W, Pang J, Liu W, Fang Y, Wen X, Wei K, Gao X (2010) Docetaxel loaded oleic acid-coated hydroxyapatite nanoparticles enhance the docetaxel-induced apoptosis through activation of caspase-2 in androgen independent prostate cancer cells. J Control Release 147:278–288. https://doi.org/10.1016/j.jconrel.2010.07.108

    Article  CAS  PubMed  Google Scholar 

  9. Wei Y, Liang J, Zheng X, Pi C, Liu H, Yang H, Zou Y, Ye Y, Zhao L (2017) Lung-targeting drug delivery system of baicalin-loaded nanoliposomes: development, biodistribution in rabbits, and pharmacodynamics in nude mice bearing orthotopic human lung cancer. Int J Nanomed 12:251–261. https://doi.org/10.2147/ijn.s119895

    Article  CAS  Google Scholar 

  10. Ling CQ, Yue XQ, Ling C (2014) Three advantages of using traditional Chinese medicine to prevent and treat tumor. J Integr Med 12:331–335

    Article  PubMed  Google Scholar 

  11. Xie G, Cui Z, Peng K, Zhou X, Xia Q, Xu D (2019) Aidi injection, a traditional Chinese medicine injection, could be used as an adjuvant drug to improve quality of life of cancer patients receiving chemotherapy: a propensity score matching analysis. Integr Cancer Ther. https://doi.org/10.1177/1534735418810799

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guo Z, Jia X, Liu JP, Liao J, Yang Y (2012) Herbal medicines for advanced colorectal cancer. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD004653.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cheng Y, Ping J, Xu HD, Fu HJ, Zhou ZH (2006) Synergistic effect of a novel oxymatrine-baicalin combination against hepatitis B virus replication, alpha smooth muscle actin expression and type I collagen synthesis in vitro. World J Gastroenterol 12:5153–5159. https://doi.org/10.3748/wjg.v12.i32.5153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kimura Y, Yokoi K, Matsushita N, Okuda H (1997) Effects of flavonoids isolated from scutellariae radix on the production of tissue-type plasminogen activator and plasminogen activator inhibitor-1 induced by thrombin and thrombin receptor agonist peptide in cultured human umbilical vein endothelial cells. J Pharm Pharmacol 49:816–822. https://doi.org/10.1111/j.2042-7158.1997.tb06119.x

    Article  CAS  PubMed  Google Scholar 

  15. Zhi HJ, Zhu HY, Zhang YY, Lu Y, Li H, Chen DF (2019) In vivo effect of quantified flavonoids-enriched extract of Scutellaria baicalensis root on acute lung injury induced by influenza A virus. Phytomedicine 57:105–116. https://doi.org/10.1016/j.phymed.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  16. Gao T, Xu Z (2019) Hybrid sequencing of full-length cDNA transcripts of the medicinal plant Scutellaria baicalensis. Int J Mol Sci. https://doi.org/10.3390/ijms20184426

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chirumbolo S (2018) Baicalin in flavocoxid may act against hepatitis B virus via a pro-inflammatory pathway. Inflamm Res 67:203–205. https://doi.org/10.1007/s00011-017-1111-x

    Article  CAS  PubMed  Google Scholar 

  18. Zhou T, Zhang A, Kuang G, Gong X, Jiang R, Lin D, Li J, Li H, Zhang X, Wan J, Li H (2017) Baicalin inhibits the metastasis of highly aggressive breast cancer cells by reversing epithelial-to-mesenchymal transition by targeting beta-catenin signaling. Oncol Rep 38:3599–3607. https://doi.org/10.3892/or.2017.6011

    Article  CAS  PubMed  Google Scholar 

  19. Xu L, Li J, Zhang Y, Zhao P, Zhang X (2017) Regulatory effect of baicalin on the imbalance of Th17/Treg responses in mice with allergic asthma. J Ethnopharmacol 208:199–206. https://doi.org/10.1016/j.jep.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  20. Ma C, Ma Z, Fu Q, Ma S (2014) Anti-asthmatic effects of baicalin in a mouse model of allergic asthma. Phytother Res 28:231–237. https://doi.org/10.1002/ptr.4983

    Article  CAS  PubMed  Google Scholar 

  21. Hang Y, Qin X (2018) Baicalin reduces blood lipids and inflammation in patients with coronary artery disease and rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis 17:146. https://doi.org/10.1186/s12944-018-0797-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng XD, Dai LL, Huang CQ, He CM, Chen LJ (2009) Correlation between anti-fibrotic effect of baicalin and serum cytokines in rat hepatic fibrosis. World J Gastroenterol 15:4720–4725. https://doi.org/10.3748/wjg.15.4720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miocinovic R, McCabe NP, Keck RW, Jankun J, Hampton JA, Selman SH (2005) In vivo and in vitro effect of baicalein on human prostate cancer cells. Int J Oncol 26:241–246

    CAS  PubMed  Google Scholar 

  24. Chan FL, Choi HL, Chen ZY, Chan PS, Huang Y (2000) Induction of apoptosis in prostate cancer cell lines by a flavonoid, baicalin. Cancer Lett 160:219–228. https://doi.org/10.1016/s0304-3835(00)00591-7

    Article  CAS  PubMed  Google Scholar 

  25. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  26. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, Ginther C, Atefi M, Chen I, Fowst C, Los G, Slamon DJ (2009) PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 11:R77. https://doi.org/10.1186/bcr2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, Del Prado M, Lallena MJ, Torres R, Ajamie RT, Wishart GN, Flack RS, Neubauer BL, Young J, Chan EM, Iversen P, Cronier D, Kreklau E, de Dios A (2014) Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest New Drugs 32:825–837. https://doi.org/10.1007/s10637-014-0120-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Howie LJ, Singh H, Bloomquist E, Wedam S, Amiri-Kordestani L, Tang S, Sridhara R, Sanchez J, Prowell TM, Kluetz PG, King-Kallimanis BL, Gao JJ, Ibrahim A, Goldberg KB, Theoret M, Pazdur R, Beaver JA (2019) Outcomes of older women with hormone receptor-positive, human epidermal growth factor receptor-negative metastatic breast cancer treated with a CDK4/6 inhibitor and an aromatase inhibitor: an FDA pooled analysis. J Clin Oncol. https://doi.org/10.1200/jco.18.02217

    Article  PubMed  Google Scholar 

  29. Finn RS, Liu Y, Zhu Z, Martin M (2019) Biomarker analyses of response to cyclin dependent kinase 4/6 inhibition and endocrine therapy in women with treatment-naive metastatic breast cancer. Clin Cancer Res. https://doi.org/10.1158/1078-0432.ccr-19-0751

    Article  PubMed  PubMed Central  Google Scholar 

  30. Curigliano G, Criscitiello C, Esposito A, Intra M, Minucci S (2017) Pharmacokinetic drug evaluation of ribociclib for the treatment of metastatic, hormone-positive breast cancer. Expert Opin Drug Metab Toxicol 13:575–581. https://doi.org/10.1080/17425255.2017.1318848

    Article  CAS  PubMed  Google Scholar 

  31. Goetz MP, Toi M, Campone M, Sohn J, Paluch-Shimon S, Huober J, Park IH, Tredan O, Chen SC, Manso L, Freedman OC, Garnica Jaliffe G, Forrester T, Frenzel M, Barriga S, Smith IC, Bourayou N, Di Leo A (2017) MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol 35:3638–3646. https://doi.org/10.1200/jco.2017.75.6155

    Article  CAS  PubMed  Google Scholar 

  32. Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, Harbeck N, Lipatov ON, Walshe JM, Moulder S, Gauthier E, Lu DR, Randolph S, Dieras V, Slamon DJ (2016) Palbociclib and letrozole in advanced breast cancer. N Engl J Med 375:1925–1936. https://doi.org/10.1056/NEJMoa1607303

    Article  CAS  PubMed  Google Scholar 

  33. Zhang W, Duan N, Song T, Li Z, Zhang C, Chen X (2017) The emerging roles of forkhead box (FOX) proteins in osteosarcoma. J Cancer 8:1619–1628. https://doi.org/10.7150/jca.18778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Myatt SS, Lam EW (2007) The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7:847–859. https://doi.org/10.1038/nrc2223

    Article  CAS  PubMed  Google Scholar 

  35. Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, Zhai H, Vidal M, Gygi SP, Braun P, Sicinski P (2011) A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 20:620–634. https://doi.org/10.1016/j.ccr.2011.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Msaouel P, Pissimissis N, Halapas A, Koutsilieris M (2008) Mechanisms of bone metastasis in prostate cancer: clinical implications. Best Pract Res Clin Endocrinol Metab 22:341–355. https://doi.org/10.1016/j.beem.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  37. Gu ZQ, Sun YH, Xu CL, Liu Y (2005) Study of baicalin in inducing prostate cancer cell line DU145 apoptosis in vitro. Zhongguo Zhong Yao Za Zhi 30:63–66

    CAS  PubMed  Google Scholar 

  38. Ikezoe T, Chen SS, Heber D, Taguchi H, Koeffler HP (2001) Baicalin is a major component of PC-SPES which inhibits the proliferation of human cancer cells via apoptosis and cell cycle arrest. Prostate 49:285–292. https://doi.org/10.1002/pros.10024

    Article  CAS  PubMed  Google Scholar 

  39. Chen S, Ruan Q, Bedner E, Deptala A, Wang X, Hsieh TC, Traganos F, Darzynkiewicz Z (2001) Effects of the flavonoid baicalin and its metabolite baicalein on androgen receptor expression, cell cycle progression and apoptosis of prostate cancer cell lines. Cell Prolif 34:293–304. https://doi.org/10.1046/j.0960-7722.2001.00213.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang X, Fang G, Pang Y (2018) Chinese medicines in the treatment of prostate cancer: from formulas to extracts and compounds. Nutrients. https://doi.org/10.3390/nu10030283

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang Z, Banerjee S, Kong D, Li Y, Sarkar FH (2007) Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res 67:8293–8300. https://doi.org/10.1158/0008-5472.can-07-1265

    Article  CAS  PubMed  Google Scholar 

  42. Pan H, Zhu Y, Wei W, Shao S, Rui X (2018) Transcription factor FoxM1 is the downstream target of c-Myc and contributes to the development of prostate cancer. World J Surg Oncol 16:59

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Yao B, Wang Y, Zhang M, Fu S, Gao H, Peng R, Zhang L, Tang J (2014) Increased FoxM1 expression is a target for metformin in the suppression of EMT in prostate cancer. Int J Mol Med 33:1514–1522. https://doi.org/10.3892/ijmm.2014.1707

    Article  CAS  PubMed  Google Scholar 

  44. Liu Y, Gong Z, Sun L, Li X (2014) FOXM1 and androgen receptor co-regulate CDC6 gene transcription and DNA replication in prostate cancer cells. Biochim Biophys Acta 1839:297–305. https://doi.org/10.1016/j.bbagrm.2014.02.016

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaozhao Liang or Li Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Approval was obtained from the ethics committee of the First Affiliated Hospital of Anhui Medical University. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Zhan, C., Du, H. et al. Baicalin suppresses the cell cycle progression and proliferation of prostate cancer cells through the CDK6/FOXM1 axis. Mol Cell Biochem 469, 169–178 (2020). https://doi.org/10.1007/s11010-020-03739-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03739-1

Keywords

Navigation