Skip to main content
Log in

In Situ Al-TiC Composites Fabricated by Self-propagating High-Temperature Reaction: Insights on Reaction Pathways and Their Microstructural Signatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, we have analyzed the formation mechanisms and processing-microstructure relationships for Al/TiC metal matrix nanocomposites produced in situ via thermite-assisted (e.g., CuO) self-propagating high-temperature synthesis (SHS). Al/TiC composites were created by reacting Al-Ti-C-CuO pellets in an Al melt using a wide variety of processing conditions (e.g., precursor powder amounts, bulk melt temperature, precursor powder size, pellet packing method). As-cast composites were visualized using both 2D (SEM) and 3D (TXM) microscopy techniques, to study TiC particle and secondary precipitate (e.g., Al3Ti) characteristics at the nanoscale. SHS-produced samples reveal complex microstructures consisting of individual and clustered TiC particles, elongated Al3Ti intermetallics, and C-rich regions surrounded by TiC. Based on a thermodynamic analysis and our microstructural observations, we propose three dominant TiC formation pathways, each resulting in a distinct microstructural signature. Finally, we utilize multivariate statistics (canonical correlations) on the full breadth of imaging data to infer the dominant processing variables (i.e., amount of CuO and C) that most strongly influence TiC particle characteristics and the final composite microstructure. We also discuss how the dominant processing variables relate to the proposed formation pathways and how they may inform the rational design of future composites produced via thermite-assisted SHS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. We create two separate canonical variates (denoted as \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {Y}_{1} \) and \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {Y}_{2} \)) in order to avoid the problem of multicollinearity[50] between the dependent variables.

References

  1. 1. R. Geng, F. Qiu, Q.C. Jiang: Adv. Eng. Mater., 2018, vol. 20, pp. 1-13.

    Google Scholar 

  2. 2. E.D. Moor, A. Luo, D.K. Matlock, J.G. Speer, A. Taub: Annu. Rev. Mater. Res, 2000, vol. 49, pp. 1-33.

    Google Scholar 

  3. 3. A. Mortensen, J. Llorca: Annu. Rev. Mater. Res, 2010, vol. 40, pp. 243-270.

    CAS  Google Scholar 

  4. 4. A.V. Muley, S. Aravindan, I.P. Singh: Manuf. Rev., 2015, vol. 2, pp. 15-15.

    Google Scholar 

  5. 5. S.L. Pramod, S.R. Bakshi, B.S. Murty: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2185-2207.

    CAS  Google Scholar 

  6. 6. D.K. Das, P.C. Mishra, S. Singh, S. Pattanaik: Int. J. Mech. Mater. Eng., 2014, vol. 9, pp. 1-15.

    Google Scholar 

  7. 7. J. Hashim, L. Looney, M.S.J. Hashmi: J. Mater. Process. Technol., 2001, vol. 119, pp. 324-328.

    CAS  Google Scholar 

  8. 8. B.S.S. Daniel, V.S.R. Murthy, G.S. Murty: J. Mater. Process. Technol., 1997, vol. 68, pp. 132-155.

    Google Scholar 

  9. 9. Y.H. Cho, J.M. Lee, S.H. Kim: Metall. Mater. Trans. A, 2014, vol. 45, pp. 5667-5678.

    CAS  Google Scholar 

  10. 10. I. Anza, M.M. Makhlouf: Metall. Mater. Trans. B, 2018, vol. 49, pp. 466-480.

    CAS  Google Scholar 

  11. 11. C. Borgonovo, M.M. Makhlouf: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5125-5135.

    Google Scholar 

  12. C.H. Henager, J.L. Brimhall, L.N. Brush: Mater. Sci. Eng., A, 1995, vol. 195, pp. 65-74.

  13. 13. R. Radhakrishnan, S.B. Bhaduri, C.H. Henager: Adv. PM Part., 1995, vol. 3, pp. 1-9.

    Google Scholar 

  14. 14. M. Backhaus-Riccoult, H. Schmalzried: Ber. Bunsenges. Phys. Chem., 1985, vol. 89, pp. 1323-1330.

    Google Scholar 

  15. 15. M. Martin, H. Schmalzried: Ber. Bunsenges. Phys. Chem., 1985, vol. 89, pp. 124-130.

    CAS  Google Scholar 

  16. S.-B. Li, J.-X. Xie, L.-Y. Zhang, L.-F. Cheng: Mater. Sci. Eng. A, 2004, vol. 381, pp. 51-56.

    Google Scholar 

  17. 17. A. Zhou, C.-a. Wang, Z. Ge, L. Wu: J. of Mater. Sci. Lett., 2001, vol. 20, pp. 1971-1973.

    CAS  Google Scholar 

  18. 18. Y. Bai, X. He, Y. Li, C. Zhu, S. Zhang: J. Mater. Res., 2009, vol. 24, pp. 2528-2535.

    CAS  Google Scholar 

  19. 19. R.F. Shyu, C.T. Ho: J. Mater. Process. Technol., 2006, vol. 171, pp. 411-416.

    CAS  Google Scholar 

  20. 20. C. Wang, H. Gao, Y. Dai, X. Ruan, J. Shen, J. Wang, B. Sun: J. Alloys Compd., 2010, vol. 490, pp. 2009-2011.

    Google Scholar 

  21. 21. Y.H. Cho, J.M. Lee, S.H. Kim: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1374-1384.

    CAS  Google Scholar 

  22. X.C. Tong, H.S. Fang: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 875-891.

    CAS  Google Scholar 

  23. 23. E. Zhang, S. Zeng, B. Yang, Q. Li, M. Ma: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1147-1151.

    CAS  Google Scholar 

  24. I. Gotman, M.J. Koczak, E. Shtessel: Mater. Sci. Eng. A, 1994, vol. 187, pp. 189-199.

    Google Scholar 

  25. V. De Andrade, A. Deriy, M.J. Wojcik, D. Gürsoy, D. Shu, K. Fezzaa, F. De Carlo: Nanoscale 3D imaging at the Advanced Photon Source (SPIE, 2016). Accessed 20 August 2019.

  26. 26. C.S. Kaira, V. De Andrade, S.S. Singh, C. Kantzos, A. Kirubanandham, F. De Carlo, N. Chawla: Adv. Mater., 2017, vol. 29, pp. 1-8.

    Google Scholar 

  27. 27. J.H. Friedman, J.L. Bentley, R.A. Finkel: ACM Trans. Math. Software, 1976, vol. 1549, pp. 1-38.

    Google Scholar 

  28. 28. R. Keinan, H. Bale, N. Gueninchault, E.M. Lauridsen, A.J. Shahani: Acta Mater., 2018, vol. 148, pp. 225-234.

    CAS  Google Scholar 

  29. A.J. Shahani, X. Xiao, K. Skinner, M. Peters, P.W. Voorhees: Mater. Sci. Eng. A, 2016, vol. 673, pp. 307-320.

    CAS  Google Scholar 

  30. 30. D. Gürsoy, F. De Carlo, X. Xiao, C. Jacobsen: J. Synchrotron Radiat., 2014, vol. 21, pp. 1188-1193.

    Google Scholar 

  31. B.A. Dowd, G.H. Campbell, R.B. Marr, V.V. Nagarkar, S.V. Tipnis, L. Axe, D.P. Siddons: in Dev. X-Ray Tomogr. II Conf. Proc., 1999, pp. 224–36.

  32. 32. D.M. Pelt, V. De Andrade: Adv. Struct. Chem. Imaging, 2017, vol. 2, pp. 1-14.

    Google Scholar 

  33. 33. Y.-H. Cho, J.-M. Lee, H.-J. Kim, J.-J. Kim, S.-H. Kim: Met. Mater. Int., 2013, vol. 19, pp. 1109-1116.

    CAS  Google Scholar 

  34. K. Lee, D.S. Stewart, M. Clemenson, N. Glumac, C. Murzyn: AIP Conf. Proc., 2017, pp. 1–4.

  35. 35. P.C. Maity, P.N. Chakraborty, S.C. Panigrahi: Matt. Lett., 1997, vol. 30, pp. 147-151.

    CAS  Google Scholar 

  36. S.H. Fischer, M.C. Grubelich: 32nd AIAA/ASME/SAE/ASEE Joint Propul. Conf. Proc., 1996, pp. 1–13.

  37. D.S. Stewart: AIP, 2017, pp. 1–4.

  38. 38. R.A. Rapp, X. Zheng: Metall. Trans. A, 1991, vol. 22, pp. 3071-3075.

    CAS  Google Scholar 

  39. 39. N. Samer, J. Andrieux, B. Gardiola, N. Karnatak, O. Martin, H. Kurita, L. Chaffron, S. Gourdet, S. Lay, O. Dezellus: Composites Part A, 2015, vol. 72, pp. 50-57.

    CAS  Google Scholar 

  40. 40. H.Y. Wang, Q.C. Jiang, X.L. Li, J.G. Wang: Scr. Mater., 2003, vol. 48, pp. 1349-1354.

    CAS  Google Scholar 

  41. 41. Q.C. Jiang, H.Y. Wang, Y.G. Zhao, X.L. Li: Mater. Res. Bull., 2005, vol. 40, pp. 521-527.

    CAS  Google Scholar 

  42. 42. V.V. Dalvi, A.K. Suresh: AIChE J., 2011, vol. 57, pp. 1329-1338.

    CAS  Google Scholar 

  43. A. Banerji, W. Reif: Metall. Trans. A, 1986, vol. 17A, pp. 2127-2137.

    CAS  Google Scholar 

  44. 44. M.E. Fine, J.G. Conley: Metall. Trans. A, 1989, vol. 21A, pp. 2609-2610.

    Google Scholar 

  45. 45. S. Chowdhury, K. Sullivan, N. Piekiel, L. Zhou, M.R. Zachariah: J. Phys. Chem. C, 2010, vol. 114, pp. 9191-9195.

    CAS  Google Scholar 

  46. 46. N. Frage, N. Frumin, L. Levin, M. Polak, M.P. Dariel: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1341-1345.

    CAS  Google Scholar 

  47. 47. Z.W. Liu, Q. Han, J.G. Li: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4460-4463.

    Google Scholar 

  48. 48. V.T. Witusiewicz, B. Hallstedt, A.A. Bondar, U. Hecht, S.V. Sleptsov, T.Y. Velikanova: J. Alloys Compd., 2015, vol. 623, pp. 480-496.

    CAS  Google Scholar 

  49. U.R. Kattner, J.C. Lin, Y.A. Chang: Metall. Trans. A, 1992, vol. 23A, pp. 2081-2090.

    CAS  Google Scholar 

  50. J.F. Hair, Jr., W.C. Black, B.J. Babin, R.E. Anderson: Multivariate Data Analysis, 2014.

  51. 51. A.A.A. Kuylen, T.M.M. Verhallen: J. Econ. Psycho., 1981, vol. 1, pp. 217-237.

    Google Scholar 

  52. 52. A. Lawrence, J.M. Rickman, M.P. Harmer, A.D. Rollett: Acta Mater., 2016, vol. 103, pp. 681-687.

    CAS  Google Scholar 

  53. 53. V. Uurtio, J.M. Monteiro, J. Kandola, J. Shawe-Taylor, D. Fernandez-Reyes, J. Rousu: ACM Comput. Surv., 2017, vol. 50, pp. 1-33.

    Google Scholar 

  54. 54. A. Sherry, R.K. Henson: J. Pers. Assess., 2010, vol. 3891, pp. 37-41.

    Google Scholar 

  55. 55. K.E. Muller: Am. Stat., 1982, vol. 36, pp. 342-354.

    Google Scholar 

  56. 56. J.M. Rickman, Y. Wang, A.D. Rollett, M.P. Harmer, C. Compson: npj Comput. Mater., 2017, vol. 3, pp. 1-5.

    CAS  Google Scholar 

  57. 57. R.C. MacCallum, K.F. Widaman, S. Zhang, S. Hong: Psychol. Methods, 1999, vol. 4, pp. 84-99.

    Google Scholar 

  58. 58. A.K. Chaubey, S. Scudino, N.K. Mukhopadhyay, M.S. Khoshkhoo, B.K. Mishra, J. Eckert: J. Alloys Compd., 2012, vol. 536, pp. S134-S137.

    CAS  Google Scholar 

  59. Z. Wang, M. Song, C. Sun, Y. He: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1131-1137.

    Google Scholar 

  60. 60. J. Chen, C. Bao, Y. Ma, Z. Chen: J. Alloys Compd., 2017, vol. 695, pp. 162-170.

    CAS  Google Scholar 

  61. B.M. Tyson, R.K. Abual-rub, A. Yazdanbakhsh, Z. Grasley: Composites B 2011, vol. 42, pp. 1395-1403.

    Google Scholar 

  62. 62. H. Shimazaki, S. Shinomoto: J. Comput. Neurosci., 2010, vol. 29, pp. 171-182.

    Google Scholar 

  63. 63. I. González, S. Déjean, P.G.P. Martin, A. Baccini: J. Stat. Software, 2008, vol. 23, pp. 1-14.

    Google Scholar 

  64. 64. A. Paknia, A. Pramanik, A.R. Dixit, S. Chattopadhyaya: J. Mater. Eng. Perform., 2016, vol. 25, pp. 4444-4459.

    CAS  Google Scholar 

  65. 65. L. Banks-Sills, V. Leiderman, D. Fang: Compos. Part B-Eng., 1997, vol. 28, pp. 465-481.

    Google Scholar 

  66. 66. V.A. Romanova, R.R. Balokhonov, S. Schmauder: Acta Mater., 2009, vol. 57, pp. 97-107.

    CAS  Google Scholar 

  67. 67. S. Jin, P. Shen, D. Zhou, Q. Jiang: Cryst. Growth Des., 2012, vol. 12, pp. 2814-2824.

    CAS  Google Scholar 

  68. 68. S. Jin, P. Shen, Q. Lin, L. Zhan, Q. Jiang: Cryst. Growth Des., 2010, vol. 10, pp. 1590-1597.

    CAS  Google Scholar 

  69. B.-X. Dong, H.-Y. Yang, F. Qiu, Q. Li, S.-L. Shu, B.-Q. Zhang, Q. Jiang: Mater. Design, 2019, vol. 181, pp. 107951-107951.

    CAS  Google Scholar 

  70. 70. D. Zhang, H. Liu, L. Sun, F. Bai, Y. Wang, J. Wang: Crystals, 2017, vol. 7, pp. 1-12.

    Google Scholar 

  71. 71. L. Arnberg, L. Bäckerud, H. Klang: Met. Technol., 1982, vol. 9, pp. 7-13.

    CAS  Google Scholar 

  72. D.H. Stohn, L.M. Hogan: J. Cryst. Growth, 1979, vol. 46, pp. 387-398.

    CAS  Google Scholar 

  73. 73. M.S. Lee, B.S. Terry: Mater. Sci. Tech., 1991, vol. 7, pp. 608-612.

    CAS  Google Scholar 

  74. 74. V. Auradi, S.A. Kori: J. Alloys Compd., 2008, vol. 453, pp. 147-156.

    CAS  Google Scholar 

  75. 75. J. Zhao, T. Wang, J. Chen, L. Fu, J. He: Materials, 2017, vol. 10, pp. 1-10.

    Google Scholar 

  76. 76. E.G. Kandalova, V.I. Nikitin, J. Wanqi, A.G. Makarenko: Matt. Lett., 2002, vol. 54, pp. 131-134.

    CAS  Google Scholar 

  77. 77. Z. Liu, M. Rakita, X. Wang, W. Xu, Q. Han: J. Mater. Res., 2014, vol. 29, pp. 1354-1361.

    CAS  Google Scholar 

  78. X. Wang, A. Jha, R. Brydson: Mater. Sci. Eng. A, 2004, vol. 364, pp. 339-345.

    Google Scholar 

  79. 79. R. Nikbakht, H. Assadi: Acta Mater., 2012, vol. 60, pp. 4041-4053.

    CAS  Google Scholar 

  80. 80. B.B. Khina, B. Formanek, I. Solpan: Physica B-Condensed Matter, 2005, vol. 355, pp. 14-31.

    CAS  Google Scholar 

  81. 81. M. Ge, D.S. Coburn, E. Nazaretski, W. Xu, K. Gofron, H. Xu, Z. Yin, W.-K. Lee: Appl. Phys. Lett., 2018, vol. 113, pp. 083109

    Google Scholar 

Download references

Acknowledgments

This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors gratefully acknowledge financial support from the Melt R2-2 project funded by LIFT (Lightweight Innovations For Tomorrow), a Manufacturing Institute under the contract from the Office of Naval Research (Contract # N00014-14-2-002), as well as financial support from the National Science Foundation (Award # 1762657). The authors also acknowledge financial support from the University of Michigan College of Engineering and technical support from the Michigan Center for Materials Characterization. We also thank David Weiss at Eck Industries and Stephen Udvardy at the North American Die Casting Association for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Taub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 14, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 103 kb)

Electronic supplementary material 2 (AVI 3162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reese, C.W., Gladstein, A., Fedors, J.M. et al. In Situ Al-TiC Composites Fabricated by Self-propagating High-Temperature Reaction: Insights on Reaction Pathways and Their Microstructural Signatures. Metall Mater Trans A 51, 3587–3600 (2020). https://doi.org/10.1007/s11661-020-05786-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05786-1

Navigation