Skip to main content

Advertisement

Log in

Noncardiac comorbidity clustering in heart failure: an overlooked aspect with potential therapeutic door

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure is associated with a range of comorbidities that have the potential to impair both quality of life and clinical outcome. Unfortunately, noncardiac diseases are underrepresented in large randomized clinical trials, and their management remains poorly understood. In clinical practice, the prevalence of comorbidities in heart failure is high. Although the prognostic impact of comorbidities is well known, their prevalence and impact in specific heart failure settings have been overlooked. Many studies have described specific single noncardiac conditions, but few have examined their overall burden and grading in patients with multiple comorbidities. The risk of comorbidities in patients with heart failure rises with more advanced disease, older age, and increased frailty—three conditions that are poorly represented in clinical trials. The pathogenic links between comorbidities and heart failure involve many pathways and include neurohormonal overdrive, inflammatory activation, oxidative stress, and endothelial dysfunction. Such interactions may worsen prognoses, but details of these relationships are still under investigation. We propose a shift from cardiac-focused care to a more systemic approach that considers all noncardiac diseases and related medications. Some new drugs class such as ARNI or SGLT2 inhibitors could change prognosis by acting directly or indirectly on metabolic disorders and related vascular consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams KF Jr, Fonarow GC, Emerman CL et al (2005) Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 149:209–216

    Article  PubMed  Google Scholar 

  2. O'Connor CM, Abraham WT, Albert NM, Clare R, Gattis Stough W, Gheorghiade M, Greenberg BH, Yancy CW, Young JB, Fonarow GC (2008) Predictors of mortality after discharge in patients hospitalized with heart failure: an analysis from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am Heart J 156:662–673

    Article  PubMed  Google Scholar 

  3. Konstam MA, Gheorghiade M, Burnett JC et al (2007) Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA 297:1319–1331

    Article  CAS  PubMed  Google Scholar 

  4. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200

    Article  PubMed  Google Scholar 

  5. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey de Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride P, Peterson PN, Stevenson LW, Westlake C (2017) 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 136:e137–e161

    Article  PubMed  Google Scholar 

  6. Bajaj NS, Claggett B, Lewis EF, Desai AS, Fang JC, O'Meara E, Shah SJ, Sweitzer NK, Fleg JL, Pitt B, Rouleau JL, Finn P, Pfeffer MA, Solomon SD (2018) Influence of ejection fraction on cause-specific mortality in heart failure with preserved ejection fraction. Eur J Heart Fail 20:815–816

    Article  PubMed  Google Scholar 

  7. Schmidt M, Ulrichsen SP, Pedersen L, Botker HE, Sorensen HT (2016) Thirty-year trends in heart failure hospitalization and mortality rates and the prognostic impact of co-morbidity: a Danish nationwide cohort study. Eur J Heart Fail 18:490–499

    Article  PubMed  Google Scholar 

  8. van Deursen VM, Damman K, van der Meer P, Wijkstra PJ, Luijckx GJ, van Beek A, van Veldhuisen DJ, Voors AA (2014) Co-morbidities in heart failure. Heart Fail Rev 19:163–172

    Article  CAS  PubMed  Google Scholar 

  9. Brown AM, Cleland JG (1998) Influence of concomitant disease on patterns of hospitalization in patients with heart failure discharged from Scottish hospitals in 1995. Eur Heart J 19:1063–1069

    Article  CAS  PubMed  Google Scholar 

  10. Braunstein JB, Anderson GF, Gerstenblith G, Weller W, Niefeld M, Herbert R, Wu AW (2003) Noncardiac comorbidity increases preventable hospitalizations and mortality among Medicare beneficiaries with chronic heart failure. J Am Coll Cardiol 42:1226–1233

    Article  PubMed  Google Scholar 

  11. Bohm M, Pogue J, Kindermann I, Poss J, Koon T, Yusuf S (2014) Effect of comorbidities on outcomes and angiotensin converting enzyme inhibitor effects in patients with predominantly left ventricular dysfunction and heart failure. Eur J Heart Fail 16:325–333

    Article  PubMed  CAS  Google Scholar 

  12. Luttik ML, Jaarsma T, van Geel PP et al (2014) Long-term follow-up in optimally treated and stable heart failure patients: primary care vs. heart failure clinic. Results of the COACH-2 study. Eur J Heart Fail 16:1241–1248

    Article  PubMed  Google Scholar 

  13. van Deursen VM, Urso R, Laroche C, Damman K, Dahlström U, Tavazzi L, Maggioni AP, Voors AA (2014) Co-morbidities in patients with heart failure: an analysis of the European Heart Failure Pilot Survey. Eur J Heart Fail 16:103–111

    Article  PubMed  Google Scholar 

  14. Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, Wehrens XHT, Deswal A (2012) Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol 59:998–1005

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maggioni AP, Dahlstrom U, Filippatos G et al (2013) EURObservational Research Programme: regional differences and 1-year follow-up results of the Heart Failure Pilot Survey (ESC-HF Pilot). Eur J Heart Fail 15:808–817

    Article  PubMed  Google Scholar 

  16. Tahhan AS, Vaduganathan M, Greene SJ, Fonarow GC, Fiuzat M, Jessup M, Lindenfeld JA, O’Connor CM, Butler J (2018) Enrollment of older patients, women, and racial and ethnic minorities in contemporary heart failure clinical trials: a systematic review. JAMA Cardiol 3:1011–1019

    Article  PubMed  Google Scholar 

  17. Maggioni AP, Orso F, Calabria S, Rossi E, Cinconze E, Baldasseroni S, Martini N, on behalf of the ARNO Observatory (2016) The real-world evidence of heart failure: findings from 41 413 patients of the ARNO database. Eur J Heart Fail 18:402–410

    Article  PubMed  Google Scholar 

  18. Anand IS, Gupta P (2018) Anemia and iron deficiency in heart failure: current concepts and emerging therapies. Circulation 138:80–98

    Article  CAS  PubMed  Google Scholar 

  19. Kazory A, Ross EA (2009) Anemia: the point of convergence or divergence for kidney disease and heart failure? J Am Coll Cardiol 53:639–647

    Article  PubMed  Google Scholar 

  20. Belonje AM, Voors AA, van der Meer P, van Gilst WH, Jaarsma T, van Veldhuisen DJ (2010) Endogenous erythropoietin and outcome in heart failure. Circulation 121:245–251

    Article  CAS  PubMed  Google Scholar 

  21. Tang YD, Katz SD (2006) Anemia in chronic heart failure: prevalence, etiology, clinical correlates, and treatment options. Circulation 113:2454–2461

    Article  PubMed  Google Scholar 

  22. van der Putten K, Braam B, Jie KE, Gaillard CA (2008) Mechanisms of disease: erythropoietin resistance in patients with both heart and kidney failure. Nat Clin Pract Nephrol 4:47–57

    Article  PubMed  CAS  Google Scholar 

  23. Li D, Mehta JL (2005) Oxidized LDL, a critical factor in atherogenesis. Cardiovasc Res 68:353–354

    Article  CAS  PubMed  Google Scholar 

  24. Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57:660–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perrone-Filardi P, Paolillo S, Costanzo P, Savarese G, Trimarco B, Bonow RO (2015) The role of metabolic syndrome in heart failure. Eur Heart J 36:2630–2634

    Article  CAS  PubMed  Google Scholar 

  26. Klein L, Massie BM, Leimberger JD, O'Connor CM, Piña IL, Adams KF Jr, Califf RM, Gheorghiade M, OPTIME-CHF Investigators (2008) Admission or changes in renal function during hospitalization for worsening heart failure predict postdischarge survival: results from the outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF). Circ Heart Fail 1:25–33

    Article  CAS  PubMed  Google Scholar 

  27. Hillege HL, Girbes AR, de Kam PJ et al (2000) Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation 102:203–210

    Article  CAS  PubMed  Google Scholar 

  28. Brewster UC, Setaro JF, Perazella MA (2003) The renin-angiotensin-aldosterone system: cardiorenal effects and implications for renal and cardiovascular disease states. Am J Med Sci 326:15–24

    Article  PubMed  Google Scholar 

  29. Palazzuoli A, Lombardi C, Ruocco G, Padeletti M, Nuti R, Metra M, Ronco C (2016) Chronic kidney disease and worsening renal function in acute heart failure: different phenotypes with similar prognostic impact? Eur Heart J Acute Cardiovasc Care 5:534–548

    Article  PubMed  Google Scholar 

  30. Padeletti M, Jelic S, LeJemtel TH (2008) Coexistent chronic obstructive pulmonary disease and heart failure in the elderly. Int J Cardiol 125:209–215

    Article  PubMed  Google Scholar 

  31. Mentz RJ, Schulte PJ, Fleg JL, Fiuzat M, Kraus WE, Piña IL, Keteyian SJ, Kitzman DW, Whellan DJ, Ellis SJ, O'Connor CM (2013) Clinical characteristics, response to exercise training, and outcomes in patients with heart failure and chronic obstructive pulmonary disease: findings from Heart Failure and A Controlled Trial Investigating Outcomes of Exercise TraiNing (HF-ACTION). Am Heart J 165:193–199

    Article  PubMed  Google Scholar 

  32. Hawkins NM, Petrie MC, Macdonald MR et al (2011) Heart failure and chronic obstructive pulmonary disease the quandary of Beta-blockers and Beta-agonists. J Am Coll Cardiol 57:2127–2138

    Article  CAS  PubMed  Google Scholar 

  33. Gottlieb DJ, Yenokyan G, Newman AB, O'Connor GT, Punjabi NM, Quan SF, Redline S, Resnick HE, Tong EK, Diener-West M, Shahar E (2010) Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study. Circulation 122:352–360

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kasai T, Floras JS, Bradley TD (2012) Sleep apnea and cardiovascular disease: a bidirectional relationship. Circulation 126:1495–1510

    Article  PubMed  Google Scholar 

  35. Bradley TD, Floras JS (2003) Sleep apnea and heart failure: part II: central sleep apnea. Circulation 107:1822–1826

    Article  PubMed  Google Scholar 

  36. Nikolaou M, Parissis J, Yilmaz MB, Seronde MF, Kivikko M, Laribi S, Paugam-Burtz C, Cai D, Pohjanjousi P, Laterre PF, Deye N, Poder P, Cohen-Solal A, Mebazaa A (2013) Liver function abnormalities, clinical profile, and outcome in acute decompensated heart failure. Eur Heart J 34:742–749

    Article  PubMed  Google Scholar 

  37. Lavie CJ, Alpert MA, Arena R, Mehra MR, Milani RV, Ventura HO (2013) Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC Heart Fail 1:93–102

    Article  PubMed  Google Scholar 

  38. Alpert MA, Lambert CR, Panayiotou H et al (1996) Relation of duration of morbid obesity to left ventricle mass, systolic function and diastolic filling, and effect of weight loss. Am J Cardiol 76:1194–1197

    Article  Google Scholar 

  39. Britton KA, Fox CS (2011) Ectopic fat depots and cardiovascular disease. Circulation 124:e837–e841. https://doi.org/10.1161/CIRCULATIONAHA.111.077602

    Article  PubMed  Google Scholar 

  40. Pucci G, Battista F, de Vuono S et al (2014) Pericardial fat, insulin resistance, and left ventricular structure and function in morbid obesity. Nutr Metab Cardiovasc Dis 24:440–446. https://doi.org/10.1016/j.numecd.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  41. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bobbert P, Jenke A, Bobbert T et al (2012) High leptin and resistin expression in chronic heart failure: adverse outcome in patients with dilated and inflammatory cardiomyopathy. Eur J Heart Fail 14:1265–1275. https://doi.org/10.1093/eurjhf/hfs111

    Article  CAS  PubMed  Google Scholar 

  43. Gargiulo P, Marsico F, Renga F, Dell’Aversana S, Esposito I, Marciano C, Dellegrottaglie S, Perrone-Filardi P, Paolillo S (2020) The metabolic syndrome in heart failure: insights to specific mechanisms. Heart Fail Rev 25:1–7. https://doi.org/10.1007/s10741-019-09838-6

    Article  PubMed  Google Scholar 

  44. Costanzo P, Cleland JG, Pellicori P et al (2015) The obesity paradox in type 2 diabetes mellitus: relationship of body mass index to prognosis: a cohort study. Ann Intern Med 162:610–618. https://doi.org/10.7326/M14-1551

    Article  PubMed  Google Scholar 

  45. Argilés JM, Anker SD, Evans WJ, Morley JE, Fearon KCH, Strasser F, Muscaritoli M, Baracos VE (2010) Consensus on cachexia definitions. J Am Med Dir Assoc 11:229–230

    Article  PubMed  Google Scholar 

  46. Rossignol P, Masson S, Barlera S, Girerd N, Castelnovo A, Zannad F, Clemenza F, Tognoni G, Anand IS, Cohn JN, Anker SD, Tavazzi L, Latini R, on the behalf of GISSI-HF and Val-HeFT Investigators; GISSI-HF and Val-HeFT Investigators (2015) Loss in body weight is an independent prognostic factor for mortality in chronic heart failure: insights from the GISSI-HF and Val-HeFT trials. Eur J Heart Fail 17:424–433

    Article  PubMed  Google Scholar 

  47. Von Haehling S (2015) The wasting continuum in heart failure: from sarcopenia to cachexia. Proc Nutr Soc 74:367–377

    Article  Google Scholar 

  48. Pocock SJ, McMurray JJ, Dobson J et al (2008) Weight loss and mortality risk in patients with chronic heart failure in the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) programme. Eur Heart J 29:2641–2650

    Article  PubMed  Google Scholar 

  49. Bahls M, Felix SB (2016) Cachexia and right ventricular dysfunction in chronic heart failure: what is the chicken and what the egg? Eur Heart J 37:1692–1694

    Article  PubMed  Google Scholar 

  50. Valentova M, von Haehling S, Bauditz J, Doehner W, Ebner N, Bekfani T, Elsner S, Sliziuk V, Scherbakov N, Murín J, Anker SD, Sandek A (2016) Intestinal congestion and right ventricular dysfunction: a link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur Heart J 37:1684–1691

    Article  PubMed  Google Scholar 

  51. Mangner N, Matsuo Y, Schuler G, Adams V (2013) Cachexia in chronic heart failure: endocrine determinants and treatment perspectives. Endocrine 43:253–265

    Article  CAS  PubMed  Google Scholar 

  52. Arques S, Ambrosi P (2011) Human serum albumin in the clinical syndrome of heart failure. J Card Fail 17:451–458

    Article  CAS  PubMed  Google Scholar 

  53. Mentz RJ, Kelly JP, von Lueder TG, Voors AA, Lam CSP, Cowie MR, Kjeldsen K, Jankowska EA, Atar D, Butler J, Fiuzat M, Zannad F, Pitt B, O’Connor CM (2014) Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 64:2281–2293

    Article  PubMed  PubMed Central  Google Scholar 

  54. Farmakis D, Simitsis P, Bistola V, Triposkiadis F, Ikonomidis I, Katsanos S, Bakosis G, Hatziagelaki E, Lekakis J, Mebazaa A, Parissis J (2017) Acute heart failure with mid-range left ventricular ejection fraction: clinical profile, in-hospital management, and short-term outcome. Clin Res Cardiol 106:359–368

    Article  PubMed  Google Scholar 

  55. Fonarow GC, Stough WG, Abraham WT, Albert NM, Gheorghiade M, Greenberg BH, O’Connor CM, Sun JL, Yancy CW, Young JB, OPTIMIZE-HF Investigators and Hospitals (2007) Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol 50:768–777

    Article  PubMed  Google Scholar 

  56. Shiga T, Suzuki A, Haruta S, HIJ-HF II Investigators et al (2019) Clinical characteristics of hospitalized heart failure patients with preserved, mid-range, and reduced ejection fractions in Japan. ESC Heart Fail 6:475–486. https://doi.org/10.1002/ehf2.12418

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, Devore AD, Yancy CW, Fonarow GC (2017) Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol 70:2476–2486

    Article  PubMed  Google Scholar 

  58. Vaduganathan M, Patel RB, Michel A, Shah SJ, Senni M, Gheorghiade M, Butler J (2017) Mode of death in heart failure with preserved ejection fraction. J Am Coll Cardiol 69:556–569. https://doi.org/10.1016/j.jacc.2016.10.078

    Article  PubMed  Google Scholar 

  59. Vergaro G, Ghionzoli N, Innocenti L, Taddei C, Giannoni A, Valleggi A, Borrelli C, Senni M, Passino C, Emdin M (2019) Noncardiac versus cardiac mortality in heart failure with preserved, midrange, and reduced ejection fraction. J Am Heart Assoc 8:e013441. https://doi.org/10.1161/JAHA.119.013441

    Article  PubMed  PubMed Central  Google Scholar 

  60. Iorio A, Senni M, Barbati G, Greene SJ, Poli S, Zambon E, di Nora C, Cioffi G, Tarantini L, Gavazzi A, Sinagra G, di Lenarda A (2018) Prevalence and prognostic impact of non-cardiac co-morbidities in heart failure outpatients with preserved and reduced ejection fraction: a community-based study. Eur J Heart Fail 20:1257–1266. https://doi.org/10.1002/ejhf.1202

    Article  PubMed  Google Scholar 

  61. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    Article  CAS  PubMed  Google Scholar 

  62. Rodrigues B, Cam MC, McNeill JH (1998) Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem 180:53–57

    Article  CAS  PubMed  Google Scholar 

  63. Evangelista I, Nuti R, Picchioni T, Dotta F, Palazzuoli A (2019) Molecular dysfunction and phenotypic derangement in diabetic cardiomyopathy. Int J Mol Sci 20(13). https://doi.org/10.3390/ijms20133264

  64. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ (2003) Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289:194–202

    Article  PubMed  Google Scholar 

  65. Nistala R, Savin V (2017) Diabetes, hypertension, and chronic kidney disease progression: role of DPP4. Am J Physiol Renal Physiol 312:F661–F670. https://doi.org/10.1152/ajprenal.00316.2016

    Article  CAS  PubMed  Google Scholar 

  66. Chade AR, Hall JE (2016) Role of the renal microcirculation in progression of chronic kidney injury in obesity. Am J Nephrol 44:354–367

    Article  PubMed  Google Scholar 

  67. Cruz DN, Gheorghiade M, Palazzuoli A, Ronco C, Bagshaw SM (2011) Epidemiology and outcome of the cardio-renal syndrome. Heart Fail Rev 16:531–542. https://doi.org/10.1007/s10741-010-9223-1

    Article  PubMed  Google Scholar 

  68. Ruocco G, Palazzuoli A, Ter Maaten JM (2020) The role of the kidney in acute and chronic heart failure. Heart Fail Rev 25:107–118

    Article  PubMed  Google Scholar 

  69. Damman K, Valente MA, Voors AA, O'Connor CM, van Veldhuisen DJ, Hillege HL (2014) Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J 35:455–469. https://doi.org/10.1093/eurheartj/eht386

    Article  PubMed  Google Scholar 

  70. Seferovic JP, Claggett B, Seidelmann SB, Seely EW, Packer M, Zile MR, Rouleau JL, Swedberg K, Lefkowitz M, Shi VC, Desai AS, McMurray JJV, Solomon SD (2017) Effect of sacubitril/valsartan versus enalapril on glycaemic control in patients with heart failure and diabetes: a post-hoc analysis from the PARADIGM-HF trial. Lancet Diabetes Endocrinol 5:333–340. https://doi.org/10.1016/S2213-8587(17)30087-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McMurray JJ, Packer M, Desai AS, PARADIGM-HF Investigators and Committees et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004. https://doi.org/10.1056/NEJMoa1409077

    Article  CAS  PubMed  Google Scholar 

  72. Haynes R, Judge PK, Staplin N, Herrington WG, Storey BC, Bethel A, Bowman L, Brunskill N, Cockwell P, Hill M, Kalra PA, McMurray JJV, Taal M, Wheeler DC, Landray MJ, Baigent C, On behalf of the UK HARP-III Collaborative Group (2018) Effects of sacubitril/valsartan versus irbesartan in patients with chronic kidney disease. Circulation 138:1505–1514. https://doi.org/10.1161/CIRCULATIONAHA.118.034818

    Article  CAS  PubMed  Google Scholar 

  73. Solomon SD, McMurray JJV, Anand IS, PARAGON-HF Investigators and Committees et al (2019) Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381:1609–1620. https://doi.org/10.1056/NEJMoa1908655

    Article  CAS  PubMed  Google Scholar 

  74. Haynes R, Zhu D, Judge PK, Herrington WG, Kalra PA, Baigent C. (2019) Chronic kidney disease, heart failure and neprilysin inhibition. Nephrol Dial Transplant. pii: gfz058. doi: https://doi.org/10.1093/ndt/gfz058.

  75. Solomon SD, Rizkala AR, Lefkowitz MP, Shi VC, Gong JJ, Anavekar N, Anker SD, Arango JL, Arenas JL, Atar D, Ben-Gal T, Boytsov SA, Chen CH, Chopra VK, Cleland J, Comin-Colet J, Duengen HD, Echeverría Correa LE, Filippatos G, Flammer AJ, Galinier M, Godoy A, Goncalvesova E, Janssens S, Katova T, Køber L, Lelonek M, Linssen G, Lund LH, O’Meara E, Merkely B, Milicic D, Oh BH, Perrone SV, Ranjith N, Saito Y, Saraiva JF, Shah S, Seferovic PM, Senni M, Sibulo AS Jr, Sim D, Sweitzer NK, Taurio J, Vinereanu D, Vrtovec B, Widimský J Jr, Yilmaz MB, Zhou J, Zweiker R, Anand IS, Ge J, Lam CSP, Maggioni AP, Martinez F, Packer M, Pfeffer MA, Pieske B, Redfield MM, Rouleau JL, van Veldhuisen DJ, Zannad F, Zile MR, McMurray JJV (2018) Baseline characteristics of patients with heart failure and preserved ejection fraction in the PARAGON-HF trial. Circ Heart Fail 11:e004962. https://doi.org/10.1161/CIRCHEARTFAILURE.118.004962

    Article  PubMed  Google Scholar 

  76. Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ (2016) Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134:752–772. https://doi.org/10.1161/CIRCULATIONAHA.116.021887

    Article  CAS  PubMed  Google Scholar 

  77. Zelniker TA, Braunwald E (2018) Cardiac and renal effects of sodium-glucose co-transporter 2 inhibitors in diabetes: JACC state-of-the-art review. J Am Coll Cardiol 72:1845–1855. https://doi.org/10.1016/j.jacc.2018.06.040

    Article  CAS  PubMed  Google Scholar 

  78. Hallow KM, Greasley PJ, Helmlinger G, Chu L, Heerspink HJ, Boulton DW (2018) Evaluation of renal and cardiovascular protection mechanisms of SGLT2 inhibitors: model-based analysis of clinical data. Am J Physiol Renal Physiol 315:F1295–F1306. https://doi.org/10.1152/ajprenal.00202.2018

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kato ET, Silverman MG, Mosenzon O, Zelniker TA, Cahn A, Furtado RHM, Kuder J, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Bonaca MP, Ruff CT, Desai AS, Goto S, Johansson PA, Gause-Nilsson I, Johanson P, Langkilde AM, Raz I, Sabatine MS, Wiviott SD (2019) Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 139:2528–2536. https://doi.org/10.1161/CIRCULATIONAHA.119.040130

    Article  CAS  PubMed  Google Scholar 

  80. Packer M, Anker SD, Butler J, Filippatos G, Zannad F (2017) Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol 2:1025–1029. https://doi.org/10.1001/jamacardio.2017.2275

    Article  PubMed  Google Scholar 

  81. Wanner C, Lachin JM, Inzucchi SE, EMPA-REG OUTCOME Investigators et al (2018) Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 137:119–129. https://doi.org/10.1161/CIRCULATIONAHA.117.028268

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Palazzuoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

- Cardiac and extracardiac comorbidities are often associated with HF syndrome and could impair prognosis and clinical course

- The prevalence and severity of extracardiac condition is wide but in clinical practice is higher compared to the clinical registries

- Metabolic dysfunction such as obesity CKD and diabetes are directly involved in cardiovascular function deterioration and may negatively influence prognosis if not adequately treated

- Neprylisin inhibitor and SGLT-2 antagonist could improve both cardiovascular and kidney physiology respectively restoring endothelial function and intraglomerular feed back

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palazzuoli, A., Ruocco, G. & Gronda, E. Noncardiac comorbidity clustering in heart failure: an overlooked aspect with potential therapeutic door. Heart Fail Rev 27, 767–778 (2022). https://doi.org/10.1007/s10741-020-09972-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09972-6

Keywords

Navigation