Skip to main content
Log in

Switching- and hedging- point policy for preventive maintenance with degrading machines: application to a two-machine line

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

Maintenance and production are frequently managed as separate activities although they do interact. Disruptive events such as machine failures may find the company unready to repair the machine immediately leading to time waste. Preventive Maintenance may be carried out and maintenance time reduced to the effective task duration, in order to prevent time waste. Companies and researchers have been focusing on policies able to mitigate the impact of Preventive Maintenance on system availability, by exploiting the knowledge about degradation profiles in machines and the joint information from the machine state and the buffer level. In this work, the mathematical proof of the optimal threshold-based control policy for Preventive Maintenance with inventory cost, maintenance cost, backlog cost is provided. The control policy is defined in terms of buffer thresholds and dependency of the thresholds on the degradation condition. The optimal control policy is proved to include a combination of switching points and hedging points, where the first ones activate the Preventive Maintenance for a given condition and the latter ones control the production rate in order to minimize the surplus. An extensive experimental campaign analyzes the impact of system parameters such as the Maintenance duration on the cost function. The results show that there exists cases in which the optimal policy is dominated by the effect of the hedging points or the switching points, alternatively. Therefore, the proposed method is used to provide suggestions to the management for operative decisions, in order to choose the policy fitting best the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aghezzaf EH, Najid NM (2008) Integrated production planning and preventive maintenance in deteriorating production systems. Inf Sci 178(17):3382–3392

    Article  MathSciNet  MATH  Google Scholar 

  • Aghezzaf EH, Jamali MA, Ait-Kadi D (2007) An integrated production and preventive maintenance planning model. Eur J Oper Res 181(2):679–685

    Article  MATH  Google Scholar 

  • Ambani S, Meerkov SM, Zhang L (2010) Feasibility and optimization of preventive maintenance in exponential machines and serial lines. IIE Trans 42(10):766–777

    Article  Google Scholar 

  • Barlow R, Hunter L (1960) Optimum preventive maintenance policies. Oper Res 8(1):90–100

    Article  MathSciNet  MATH  Google Scholar 

  • Buzacott JA (1967) Automatic transfer lines with buffer stocks. Int J Prod Res 5(3):183–200

    Article  Google Scholar 

  • Buzacott JA, Shanthikumar JG (1993) Stochastic models of manufacturing systems, vol 4. Prentice Hall Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Chen D, Trivedi KS (2005) Optimization for condition-based maintenance with semi-markov decision process. Reliab Eng Syst Saf 90(1):25–29

    Article  Google Scholar 

  • Colledani M, Tolio T (2012) Integrated quality, production logistics and maintenance analysis of multi-stage asynchronous manufacturing systems with degrading machines. CIRP Ann Manuf Technol 61(1):455–458

    Article  Google Scholar 

  • Colledani M, Tolio T, Fischer A, Iung B, Lanza G, Schmitt R, Váncza J (2014) Design and management of manufacturing systems for production quality. CIRP Ann Manuf Technol 63(2):773–796

    Article  Google Scholar 

  • Conway R, Maxwell W, McClain JO, Thomas LJ (1988) The role of work-in-process inventory in serial production lines. Oper Res 36(2):229–241

    Article  Google Scholar 

  • Dallery Y, Gershwin SB (1992) Manufacturing flow line systems: a review of models and analytical results. Queueing Syst 12(1–2):3–94

    Article  MATH  Google Scholar 

  • de Jonge B, Teunter R, Tinga T (2017) The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance. Reliab Eng Syst Saf 158:21–30

    Article  Google Scholar 

  • Dekker R (1996) Applications of maintenance optimization models: a review and analysis. Reliab Eng Syst Saf 51(3):229–240

    Article  Google Scholar 

  • Fitouhi MC, Nourelfath M, Gershwin SB (2017) Performance evaluation of a two-machine line with a finite buffer and condition-based maintenance. Reliab Eng Syst Saf 166:61–72

    Article  Google Scholar 

  • Gershwin SB (1994) Manufacturing systems engineering. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Groenevelt H, Pintelon L, Seidmann A (1992) Production lot sizing with machine breakdowns. Manag Sci 38(1):104–123

    Article  MATH  Google Scholar 

  • Iravani SM, Duenyas I (2002) Integrated maintenance and production control of a deteriorating production system. Lie Trans 34(5):423–435

    Google Scholar 

  • Karamatsoukis C, Kyriakidis E (2010) Optimal maintenance of two stochastically deteriorating machines with an intermediate buffer. Eur J Oper Res 207(1):297–308

    Article  MathSciNet  MATH  Google Scholar 

  • Kyriakidis E, Dimitrakos TD (2006) Optimal preventive maintenance of a production system with an intermediate buffer. Eur J Oper Res 168(1):86–99

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Meerkov SM (2008) Production systems engineering. Springer, Berlin

    MATH  Google Scholar 

  • Liberopoulos G, Papadopoulos C, Tan B, Smith J, Gershwin S (2006) Stochastic modeling of manufacturing systems. Springer, Germany

    Book  MATH  Google Scholar 

  • Meller RD, Kim DS (1996) The impact of preventive maintenance on system cost and buffer size. Eur J Oper Res 95(3):577–591

    Article  MATH  Google Scholar 

  • Nahmias S, Olsen TL (2015) Production and operations analysis. Waveland Press, Long Grove

    Google Scholar 

  • Najid NM, Alaoui-Selsouli M, Mohafid A (2011) An integrated production and maintenance planning model with time windows and shortage cost. Int J Prod Res 49(8):2265–2283

    Article  MATH  Google Scholar 

  • Papadopoulos H, Heavey C (1996) Queueing theory in manufacturing systems analysis and design: a classification of models for production and transfer lines. Eur J Oper Res 92(1):1–27

    Article  MATH  Google Scholar 

  • Pierskalla WP, Voelker JA (1976) A survey of maintenance models: the control and surveillance of deteriorating systems. Naval Res Logist 23(3):353–388

    Article  MathSciNet  MATH  Google Scholar 

  • Raouf A (1994) Improving capital productivity through maintenance. Int J Oper Prod Manag 14(7):44–52

    Article  Google Scholar 

  • Scarf PA (1997) On the application of mathematical models in maintenance. Eur J Oper Res 99(3):493–506

    Article  MathSciNet  MATH  Google Scholar 

  • Song DP (2009) Production and preventive maintenance control in a stochastic manufacturing system. Int J Prod Econ 119(1):101–111

    Article  Google Scholar 

  • Swanson L (2001) Linking maintenance strategies to performance. Int J Prod Econ 70(3):237–244

    Article  Google Scholar 

  • Tolio TA, Ratti A (2018) Performance evaluation of two-machine lines with generalized thresholds. Int J Prod Res 56(1–2):926–949

    Article  Google Scholar 

  • Valdez-Flores C, Feldman RM (1989) A survey of preventive maintenance models for stochastically deteriorating single-unit systems. Naval Res Logist 36(4):419–446

    Article  MathSciNet  MATH  Google Scholar 

  • Van der Duyn Schouten F, Vanneste S (1995) Maintenance optimization of a production system with buffer capacity. Eur J Oper Res 82(2):323–338

    Article  MATH  Google Scholar 

  • Van Horenbeek A, Pintelon L (2014) Development of a maintenance performance measurement framework—using the analytic network process (anp) for maintenance performance indicator selection. Omega 42(1):33–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Chiara Magnanini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We can derive Bellman’s equation:

$$\begin{aligned} J(S(t);t)= & {} \min _{u_c(s)} {\mathbb {E}}\left\{ \int _{t}^{t+\delta t}[g^+x^+(s) + g^-x^-(s)+ M\cdot [1 - \theta (s^u(s))] \right. \nonumber \\&\left. -\,A\cdot \theta (s^u(s))]ds + {\mathbb {E}}[J(S(t+\delta t);t + \delta t)] | S(t),t \right\} \end{aligned}$$
(47)

For \(\delta t \rightarrow 0\) and developing \(J(S(t+\delta t);t)\) to the first order:

$$\begin{aligned} J(S(t);t)= & {} \min _{u_c(t)} \left\{ [g^+x^+(t)+g^-x^-(t)+M\cdot [1 - \theta (s^u(t))] -A\cdot \theta (s^u(t))]dt \right. \nonumber \\&\left. +\,{\mathbb {E}}\left[ J(S(t);t) + \frac{\delta }{\delta t}J(S(t);t)dt + \frac{\delta }{\delta x}J(S(t);t)\delta x(t) + o(\delta t)\right] \right\} \end{aligned}$$
(48)

Since \(\delta x(t) = \frac{dx(t)}{dt} \delta t =[\theta (s^u(t))\cdot \mu (t)_u - \mu (t)_d]\delta t\):

$$\begin{aligned} J(S(t);t)= & {} \min _{u_c(t)} \left\{ [g^+x^+(t)+g^-x^-(t)+M\cdot [1 - \theta (s^u(t))] -A\cdot \theta (s^u(t))]dt \right. \nonumber \\&+\,{\mathbb {E}}\left[ J(S(t);t) + \frac{\delta }{\delta t}J(S(t);t)dt \right. \nonumber \\&\left. \left. +\,\frac{\delta }{\delta x}J(S(t);t)[\theta (s^u(t))\cdot \mu (t)_u - \mu (t)_d]\delta t + o(\delta t)\right] \right\} \end{aligned}$$
(49)

Taking the expectations over all the possible states:

$$\begin{aligned} J(S(t);t)= & {} \min _{u_c(t)} \left\{ g^+x^+(t)dt+g^-x^-(t)dt+M\cdot [1 - \theta (s^u(t))]dt -A\cdot \theta (s^u(t))dt \right. \nonumber \\&+ J(S(t);t) + \sum _i J(S_i(t);t)\lambda ^u_{s^u(t),i}\delta t \nonumber \\&+ \frac{\delta }{\delta t}J(S(t);t) + \sum _i \frac{\delta }{\delta t} J(S_i(t);t)\lambda ^u_{s^u(t),i}\delta t \delta t \nonumber \\&+ \frac{\delta }{\delta x}J(S(t);t)[\theta (s^u(t))\cdot \mu (t)_u - \mu (t)_d]\delta t \nonumber \\&\left. + \sum _i J(S_i(t);t) [\theta (s^u(t))\cdot \mu (t)_u - \mu (t)_d]\lambda ^u_{s^u(t),i}\delta t \delta t +o(\delta t)\right\} \end{aligned}$$
(50)

Eliminating the infinitesimal terms of higher order:

$$\begin{aligned} J(S(t);t)= & {} \min _{u_c(t)} \left\{ g^+x^+(t)dt+g^-x^-(t)dt+M\cdot [1 - \theta (s^u(t))]dt -A\cdot \theta (s^u(t))dt \right. \nonumber \\&+ J(S(t);t) + \sum _i J(S_i(t);t)\lambda ^u_{s^u(t),i}\delta t + \frac{\delta }{\delta t}J(S(t);t)\nonumber \\&\left. +\,\frac{\delta }{\delta x}J(S(t);t)[\theta (s^u(t))\cdot \mu (t)_u - \mu (t)_d]\delta t\right\} \end{aligned}$$
(51)

Dividing by \(\delta t\), simplifying and taking out from the minimum the terms that do not depend on \(u_c(t)\):

$$\begin{aligned} - \frac{\delta }{\delta t}J(S(t);t)= & {} \min _{u_c(t)} \left\{ g^+x^+(t)+g^-x^-(t)+M\cdot [1 - \theta (s^u(t))] -A\cdot \theta (s^u(t))\right. \nonumber \\&+ \sum _i J(S_i(t);t)\lambda ^u_{s^u(t),i} \nonumber \\&\left. +\,\frac{\delta }{\delta x}J(S(t);t)[\theta (s^u(t))\cdot \mu (t)_u - \mu (t)_d]\right\} \end{aligned}$$
(52)

Now, as far as the following conditions are true:

  • the system dynamics does not depend directly on t;

  • a steady state distribution exists for \(s^u(t), s^d(t)\)

  • it is possible to find a control policy that keeps x bounded.

Then the optimal control policy does not depend on t and the probability distribution of \(u_c(t)\) is approximately constant in t. Therefore \(J(S(t);t)\approx J(S,t)\). It is possible to define J(St) with the following expression (see Gershwin, 1994):

$$\begin{aligned} J(S(t);t) = J(x(t);s^u(t);s^d(t);t)\approx J(x,s^u,s^d,t) = J^*(t-t) + W(x,s^u,s^d) \end{aligned}$$
(53)

with:

$$\begin{aligned} \frac{\delta J}{\delta t}\approx & {} -J^*\nonumber \\ \frac{\delta J}{\delta x}\approx & {} \frac{\delta W(x,s^u,s^d)}{\delta x} \end{aligned}$$
(54)

Therefore, the Bellman’s equation becomes:

$$\begin{aligned} - \frac{\delta }{\delta t}J(S(t);t)= & {} \min _{u_c(t)} \left\{ g^+x^+(t)+g^-x^-(t)+M\cdot [1 - \theta (s^u(t))] -A\cdot \theta (s^u(t))+\right. \nonumber \\&+ \sum _i J(S_i(t);t)\lambda ^u_{s^u(t),i} \nonumber \\&\left. + \frac{\delta }{\delta x}J(S(t);t)[\theta (s^u(t))\cdot \mu (t)_u - \mu (t)_d]\right\} \end{aligned}$$
(55)
$$\begin{aligned} J^*= & {} \min _{u_c)} \left\{ g^+x^+ +g^-x^- +M\cdot [1 - \theta (s^u)] - A \cdot \theta (s^u)\right. \nonumber \\&+ \sum _i [J^*(T-t) + W(x,i,s^d)]\lambda ^u_{s^u,i} \nonumber \\&\left. +\,\frac{\delta W(x,s^u,s^d)}{\delta x}\left[ \theta (s^u)\cdot \mu ^u - \mu ^d \right] \right\} \end{aligned}$$
(56)
$$\begin{aligned} J^*= & {} \min _{u_c} \left\{ g^+x^+ +g^-x^- + M\cdot [1 - \theta (s^u)] - A \cdot \theta (s^u)+\right. \nonumber \\&+ J^*(T-t) \sum _i \lambda ^u_{s^u,i} + \sum _i W(x,i,s^d) \lambda ^u_{s^u,i} \nonumber \\&\left. +\,\frac{\delta W(x,s^u,s^d)}{\delta x}\left[ \theta (s^u)\cdot \mu ^u - \mu ^d \right] \right\} \end{aligned}$$
(57)

Since \(\sum _i \lambda ^u_{s^u,i} = 0\) and \(\sum _j \lambda ^d_{s^d,j} = 0\) by definition, we have:

$$\begin{aligned} J^*= & {} \min _{u_c} \{g^+x^+ +g^-x^- + M\cdot [1 - \theta (s^u)] - A \cdot \theta (s^u)\nonumber \\&+ \sum _i W(x,i,s^d) \lambda ^u_{s^u,i} \nonumber \\&+\,\frac{\delta W(x,s^u,s^d)}{\delta x}\left[ \theta (s^u)\cdot \mu ^u - \mu ^d \right] \} \end{aligned}$$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnanini, M.C., Tolio, T. Switching- and hedging- point policy for preventive maintenance with degrading machines: application to a two-machine line. Flex Serv Manuf J 32, 241–271 (2020). https://doi.org/10.1007/s10696-019-09370-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-019-09370-7

Keywords

Navigation