Skip to main content

Advertisement

Log in

Inflammation, hippocampal volume, and cognition in schizophrenia: results from the Northern Finland Birth Cohort 1966

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Increased blood interleukin-6 (IL-6) levels are a replicated abnormality in schizophrenia, and may be associated with smaller hippocampal volumes and greater cognitive impairment. These findings have not been investigated in a population-based birth cohort. The general population Northern Finland Birth Cohort 1966 was followed until age 43. Subjects with schizophrenia were identified through the national Finnish Care Register. Blood IL-6 levels were measured in n = 82 subjects with schizophrenia and n = 5373 controls at age 31. Additionally, 31 patients with schizophrenia and 63 healthy controls underwent brain structural MRI at age 34, and cognitive testing at ages 34 and 43. Patients with schizophrenia had significantly higher median (interquartile range) blood IL-6 levels than controls (5.31, 0.85–17.20, versus 2.42, 0.54–9.36, p = 0.02) after controlling for potential confounding factors. In both schizophrenia and controls, higher blood IL-6 levels were predictors of smaller hippocampal volumes, but not cognitive performance at age 34. We found evidence for increased IL-6 levels in patients with midlife schizophrenia from a population-based birth cohort, and replicated associations between IL-6 levels and hippocampal volumes. Our results complement and extend the previous findings, providing additional evidence that IL-6 may play a role in the pathophysiology of schizophrenia and associated brain alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nitta M, Kishimoto T, Müller N, Weiser M, Davidson M, Kane JM et al (2013) Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull 39:1230–1241

    PubMed  PubMed Central  Google Scholar 

  2. Sommer IE, van Westrhenen R, Begemann MJ, de Witte LD, Leucht S, Kahn RS (2014) Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull 40:181–191

    PubMed  Google Scholar 

  3. Laan W, Grobbee DE, Selten JP et al (2010) Adjuvant aspirin therapy reduces symptoms of schizophrenia spectrum disorders: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 71:520–527

    CAS  PubMed  Google Scholar 

  4. Muller N, Ulmschneider M, Scheppach C et al (2004) COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur Arch Psychiatry Clin Neurosci 254:14–22

    PubMed  Google Scholar 

  5. Hudson ZD, Miller BJ (2018) Meta-analysis of cytokine and chemokine genes in schizophrenia. Clin Schizophr Relat Psychoses 12:121–129

    PubMed  Google Scholar 

  6. Zakharyan R, Petrek M, Arakelyan A, Mrazek F, Atshemyan S, Boyajyan A (2012) Interleukin-6 promoter polymorphism and plasma levels in patients with schizophrenia. Tissue Antigens 80:136–142

    CAS  PubMed  Google Scholar 

  7. Khandaker GM, Zammit PRM, et al (2014) Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiatry 71:1121–1128

    PubMed  PubMed Central  Google Scholar 

  8. Khandaker GM, Zammit S, Burgess S et al (2018) Association between a functional interleukin 6 receptor genetic variant and risk of depression and psychosis in a population-based birth cohort. Brain Behav Immun 69:264–272

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stojanovic A, Martorell L, Montalvo I, Ortega L, Monseny R, Vilella E, Labad J (2014) Increased serum interleukin-6 levels in early stages of psychosis: associations with at-risk mental states and the severity of psychotic symptoms. Psychoneuroendocrinology 41:23–32

    CAS  PubMed  Google Scholar 

  10. Goldsmith D, Rapaport MH, Miller BJ (2016) Meta-analysis of cytokine alterations in Psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Mol Psychiatry 21:1696–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang AK, Miller BJ (2018) Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull 44:75–83

    PubMed  Google Scholar 

  12. Chase KA, Cone JJ, Rosen C et al (2016) The value of interleukin 6 as a peripheral diagnostic marker in schizophrenia. BMC Psychiatry 16:152

    PubMed  PubMed Central  Google Scholar 

  13. Dimitrov DH, Lee S, Yantis J et al (2013) Differential correlations between inflammatory cytokines and psychopathology in veterans with schizophrenia: potential role for IL-17 pathway. Schizophr Res 151:29–35

    PubMed  Google Scholar 

  14. Frommberger UH, Bauer J, Haselbauer P et al (1997) Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. Eur Arch Psychiatry Clin Neurosci 247:228–233

    CAS  PubMed  Google Scholar 

  15. Pae CU, Yoon CH, Kim TS, Kim JJ, Park SH, Lee CU, Lee SJ, Lee C, Paik IH (2006) Antipsychotic treatment may alter T-helper (TH) 2 arm cytokines. Int Immunopharmacol 6:666–671

    CAS  PubMed  Google Scholar 

  16. Gadient RA, Otten U (1994) Expression of interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) mRNAs in rat brain during postnatal development. Brain Res 637:10–14

    CAS  PubMed  Google Scholar 

  17. Doremus-Fitzwater TL, Gano A, Paniccia JE et al (2015) Male adolescent rats display blunted cytokine responses in the CNS after acute ethanol or lipopolysaccharide exposure. Physiol Behav 148:131–144

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gibney SM, McGuinness B, Prendergast C et al (2013) Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain Behav Immun 28:170–181

    CAS  PubMed  Google Scholar 

  19. Murray C, Griffin ÉW, O'Loughlin E et al (2015) Interdependent and independent roles of type I interferons and IL-6 in innate immune, neuroinflammatory and sickness behaviour responses to systemic poly I:C. Brain Behav Immun 48:274–286

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bellinger FP, Madamba SG, Campbell IL et al (1995) Reduced long-term potentiation in the dentate gyrus of transgenic mice with cerebral overexpression of interleukin-6. Neurosci Lett 198:95–98

    CAS  PubMed  Google Scholar 

  21. Heyser CJ, Masliah E, Samimi A et al (1997) Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci USA 94:1500–1505

    CAS  PubMed  Google Scholar 

  22. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    CAS  PubMed  Google Scholar 

  23. Braida D, Sacerdote P, Panerai AE et al (2004) Cognitive function in young and adult IL (interleukin)-6 deficient mice. Behav Brain Res 153:423–429

    CAS  PubMed  Google Scholar 

  24. Sparkman NL, Buchanan JB, Heyen JR et al (2006) Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers. J Neurosci 26:10709–10716

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Harrison NA, Cercignani M, Voon V et al (2015) Effects of inflammation on hippocampus and substantia nigra responses to novelty in healthy human participants. Neuropsychopharmacology 40:831–838

    PubMed  Google Scholar 

  26. Patel A, Zhu Y, Kuzhikandathil EV et al (2012) Soluble interleukin-6 receptor induces motor stereotypies an co-localizes with gp130 in regions linked to cortico-striato-thalamo-cortical circuits. PLoS ONE 7:e41623

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Marsland AL, Gianaros PJ, Abramowitch SM et al (2008) Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiatry 64:484–490

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Frodl T, Carballedo A, Hughes MM, Saleh K, Fagan A, Skokauskas N et al (2012) Reduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorder. Transl Psychiatry 2:e88

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kakeda S, Watanabe K, Katsuki A et al (2018) Relationship between interleukin (IL)-6 and brain morphology in drug-naïve, first-episode major depressive disorder using surface-based morphometry. Sci Rep 8:10054

    PubMed  PubMed Central  Google Scholar 

  30. Kalmady SV, Venkatasubramanian G, Shivakumar V, Gautham S, Subramaniam A, Jose DA et al (2014) Relationship between Interleukin-6 gene polymorphism and hippocampal volume in antipsychotic-naïve schizophrenia: evidence for differential susceptibility? PLoS ONE 9:e96021

    PubMed  PubMed Central  Google Scholar 

  31. Mondelli V, Cattaneo A, Murri MB et al (2011) Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis: a pathway to smaller hippocampal volume. J Clin Psychiatry 72:1677–1684

    PubMed  PubMed Central  Google Scholar 

  32. Hoseth EZ, Westlye LT, Hope S et al (2016) Association between cytokine levels, verbal memory and hippocampus volume in pscyhotic disorders and healthy controls. Acta Psychiatr Scand 133:53–62

    CAS  PubMed  Google Scholar 

  33. Handley R, Mondelli V, Zelaya F et al (2016) Effects of antipsychotics on cortisol, interleukin-6 and hippocampal perfusion in healthy volunteers. Schizophr Res 174:99–105

    PubMed  Google Scholar 

  34. Cannon TD, Chung Y, He G et al (2015) North American Prodrome Longitudinal Study Consortium Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry 77:147–157

    PubMed  Google Scholar 

  35. Lim A, Krajina K, Marsland AL (2013) Peripheral inflammation and cognitive aging. Mod Trends Pharmacopsychiatry 28:175–187

    CAS  PubMed  Google Scholar 

  36. Marsland AL, Kuan DCH, Dheu LK et al (2017) Systemic inflammation and resting state connectivity of the default mode network. Brain Behav Immun 62:162–170

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Reichenberg A, Yirmiya R, Schuld A et al (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452

    CAS  PubMed  Google Scholar 

  38. Brydon L, Harrison NA, Walker C et al (2008) Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol Psychiatry 63:1022–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Krabbe KS, Reichenberg A, Yirmiya R et al (2005) Low-dose endotoxemia and human neuropsychological functions. Brain Behav Immun 19:453–460

    CAS  PubMed  Google Scholar 

  40. Späth-Schwalbe E, Hansen K, Schmidt F et al (1998) Acute effects of recombinant human interleukin-6 on endocrine and central nervous sleep functions in healthy men. J Clin Endocrinol Metab 83:1573–1579

    PubMed  Google Scholar 

  41. Marsland AL, Petersen KL, Sathanoori R et al (2006) Interleukin-6 covaries inversely with cognitive performance among middle-aged community volunteers. Psychosom Med 68:895–903

    CAS  PubMed  Google Scholar 

  42. Mooijaart SP, Sattar N, Trompet S et al (2013) Circulating interleukin-6 concentration and cognitive decline in old age, the PROSPER study. J Intern Med 274:77–85

    CAS  PubMed  Google Scholar 

  43. Elderkin-Thompson V, Irwin MR, Hellemann G, Kumar A (2012) Interleukin-6 and memory functions of encoding and recall in healthy and depressed elderly adults. J Geriatr Psychiatry 20:753–763

    Google Scholar 

  44. Sasayama D, Hori H, Teraishi T, Hattori K, Ota M, Matsuo J et al (2012) Association of cognitive performance with interleukin-6 receptor Asp358Ala polymorphism in healthy adults. J Neural Transm 119:313–318

    CAS  PubMed  Google Scholar 

  45. Miller B, Mellor A, Buckley PF (2013) Interleukin-6 and cognition in non-affective psychosis. Schizophr Bull 39:S242–S243

    Google Scholar 

  46. Frydecka D, Misiak B, Pawlak-Adamska E, Karabon L, Tomkiewicz A, Sedlaczek P et al (2015) Interleukin-6: the missing element of the neurocognitive deterioration in schizophrenia? The focus on genetic underpinnings, cognitive impairment and clinical manifestation. Eur Arch Psychiatry Clin Neurosci 262:449–459

    Google Scholar 

  47. Aas M, Mondelli V, Toulopoulou T, et al. (2010) Is inflammation linked to cognitive impairment in first-episode psychosis and in healthy controls? 17th Annual Meeting of The Psychoneuroimmunology Research Society: Crossing Disciplines to Combat Disease, Dublin.

  48. Fillman SG, Cloonan N, Catts VS et al (2013) Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18:206–214

    CAS  PubMed  Google Scholar 

  49. Volk DW, Chitrapu A, Edelson JR et al (2015) Molecular mechanisms and timing of cortical immune activation in schizophrenia. Am J Psychiatry 172:1112–1121

    PubMed  PubMed Central  Google Scholar 

  50. Lanz TA, Reinhart V, Sheehan MJ et al (2019) Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: a comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Transl Psychiatry 9:151

    PubMed  PubMed Central  Google Scholar 

  51. Hope S, Hoseth E, Dieset I et al (2015) Inflammatory markers are associated with general cognitive abilities in schizophrenia and bipolar disorder patients and healthy controls. Schizophr Res 165:188–194

    PubMed  Google Scholar 

  52. Hori H, Yoshimura R, Katsuki A et al (2017) Relationships between serum brain-derived neurotrophic factor, plasma catecholamine metabolites, cytokines, cognitive function and clinical symptoms in Japanese patients with chronic schizophrenia treated with atypical antipsychotic monotherapy. World J Biol Psychiatry 18:401–408

    PubMed  Google Scholar 

  53. Fillman SG, Weickert TW, Lenroot RK et al (2016) Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area volume. Mol Psychiatry 21:1090–1098

    CAS  PubMed  Google Scholar 

  54. Meyer U, Schwarz MJ, Müller N (2011) Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther 132:96–110

    CAS  PubMed  Google Scholar 

  55. Khandaker GM, Cousins L, Deakin J et al (2015) Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2:258–270

    PubMed  PubMed Central  Google Scholar 

  56. Zhang L, Zheng H, Wu R et al (2019) The effect of minocycline on amelioration of cognitive deficits and pro-inflammatory cytokines levels in patients with schizophrenia. Schizophr Res 212:92–98

    PubMed  Google Scholar 

  57. Miller BJ, Dias JK, Lemos HP et al (2016) An open-label, pilot trial of adjunctive tocilizumab in schizophrenia. J Clin Psychiatry 77:275–276

    PubMed  Google Scholar 

  58. Girgis RR, Ciarleglio A, Choo T et al (2018) A randomized, double-blind, placebo-controlled clinical trial of tocilizumab, an interleukin-6 receptor antibody, for residual symptoms in schizophrenia. Neuropsychopharmacology 43:1317–1323

    CAS  PubMed  Google Scholar 

  59. Jääskeläinen E, Haapea M, Rautio N et al (2015) Twenty years of schizophrenia research in the Northern Finland Birth Cohort 1966: a systematic review. Schizophr Res Treat 2015:524875

    Google Scholar 

  60. Sorri M, Järvelin M-R (1998) Well-being and health Background to the Northern Finland 1966 birth cohort research. Int J Circumpolar Health 57:82–83

    CAS  PubMed  Google Scholar 

  61. Johansson-Persson A, Ulmius M, Cloetens L, Karhu T, Herzig KH, Onning G (2014) A high intake of dietary fiber influences C-reactive protein and fibrinogen, but not glucose and lipid metabolism, in mildly hypercholesterolemic subjects. Eur J Nutr 53:39–48

    CAS  PubMed  Google Scholar 

  62. Meriläinen S, Mäkelä J, Jensen HA et al (2012) Portal vein cytokines in the early phase of acute experimental oedematous and necrotizing porcine pancreatitis. Scand J Gastroenterol 47:1375–1385

    PubMed  Google Scholar 

  63. Lajunen TK, Purhonen AK, Haapea M et al (2012) Full-length visfatin levels are associated with inflammation in women with polycystic ovary syndrome. Eur J Clin Invest 42:321–328

    CAS  PubMed  Google Scholar 

  64. Arajärvi R, Suvisaari J, Suokas J et al (2005) Prevalence and diagnosis of schizophrenia based on register, case record and interview data in an isolated Finnish cohort born 1940–1969. Soc Psychiatry Psychiatr Epidemiol 40:808–816

    PubMed  Google Scholar 

  65. Isohanni M, Makikyro T, Moring J et al (1997) A comparison of clinical and research DSM-III-R diagnoses of schizophrenia in a Finnish national birth cohort Clinical and research diagnoses of schizophrenia. Soc Psychiatry Psychiatr Epidemiol 32:303–308

    CAS  PubMed  Google Scholar 

  66. Moilanen K, Veijola J, Laksy K et al (2003) Reasons for the diagnostic discordance between clinicians and researchers in schizophrenia in the Northern Finland 1966 Birth Cohort. Soc Psychiatry Psychiatr Epidemiol 38:305–310

    PubMed  Google Scholar 

  67. Cook MJ (1994) Mesial temporal sclerosis and volumetric investigations. Acta Neurol Scand 152:109–114

    CAS  Google Scholar 

  68. Laakso MP, Tiihonen J, Syvahti E et al (2001) A morphometric MRI study of the hippocampus in first-episode, neuroleptic-naive schizophrenia. Schizophr Res 30:3–7

    Google Scholar 

  69. Suckling J, Brammer MJ, Lingford-Hughes A et al (1999) Removal of extracerebral tissues in dual-echo magnetic resonance images via linear scale-space features. Magn Reson Imaging 17:247–256

    CAS  PubMed  Google Scholar 

  70. Ridler K, Veijola JM, Tanskanen P et al (2006) Fronto-cerebellar systems are associated with infant motor and adult executive functions in healthy adults but not in schizophrenia. Proc Natl Acad Sci USA 103:15651–15656

    CAS  PubMed  Google Scholar 

  71. Tanskanen P, Veijola J, Piippo U, Haapea M, Miettunen J, Pyhtinen J, Bullmore ET, Jones PB, Isohanni M (2005) Hippocampus and amygdala volumes in schizophrenia and other psychoses in the Northern Finland 1966 Birth Cohort. Schizophr Res 75:283–294

    PubMed  Google Scholar 

  72. Delis DC, Kramer JH, Kaplan E, Ober BA (1987) The California verbal learning test: Research edition, adult version. The Psychological Corporation, San Antonio, TX

    Google Scholar 

  73. Rannikko I, Haapea M, Miettunen J et al (2015) Changes in verbal learning and memory in schizophrenia and non-psychotic controls in midlife: a nine-year follow-up in the Northern Finland Birth Cohort study 1966. Psychiatry Res 228:671–679

    PubMed  Google Scholar 

  74. Kelly C, McEvoy JP, Miller BJ (2019) Total and differential white blood cell counts, inflammatory markers, adipokines, and incident metabolic syndrome in phase 1 of the clinical antipsychotic trials of intervention effectiveness study. Schizophr Res 209:193–197

    PubMed  Google Scholar 

  75. Kirkpatrick B, Miller B, Garcia-Rizo C et al (2012) Is glucose tolerance in antipsychotic-naïve nonaffective psychosis confounded by poor health habits? Schizophr Bull 38:280–284

    PubMed  Google Scholar 

  76. Miller BJ, Buckley PF, McEvoy JP (2018) Inflammation, substance use, psychopathology, and cognition in phase 1 of the clinical antipsychotic trials of intervention effectiveness study. Schizophr Res 195:275–282

    PubMed  Google Scholar 

  77. Miller BJ, Parker CB, Rapaport MH et al (2019) Insomnia and suicide in schizophrenia. Sleep. https://doi.org/10.1093/sleep/zsy215

    Article  PubMed  Google Scholar 

  78. Moody G, Miller BJ (2018) Total and differential white blood cell counts and hemodynamic parameters in first-episode psychosis. Psychiatry Res 260:307–312

    PubMed  Google Scholar 

  79. Dieset I, Haukvik UK, Melle I et al (2015) Association between altered brain morphology and elevated peripheral endothelial markers–implications for psychotic disorders. Schizophr Res 161:222–228

    PubMed  Google Scholar 

  80. Lesh TA, Rose CM, et al (2018) Cytokine alterations in first-episode schizophrenia and bipolar disorder: relationships to brain structure and symptoms. J Neuroinflammation 15:165

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Prasad KM, Upton CH, Nimgaonkar VL et al (2015) Differential susceptibility of white matter tracts to inflammatory mediators in schizophrenia: an integrated DTI study. Schizophr Res 161:119–125

    PubMed  Google Scholar 

  82. Kindler J, Lim CK, Weickert CS et al (2019) Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry. https://doi.org/10.1038/s41380-019-0401-9

    Article  PubMed  PubMed Central  Google Scholar 

  83. Baldi E, Bucherelli C (2005) The inverted “u-shaped” dose-effect relationships in learning and memory: modulation of arousal and consolidation. Nonlinearity Biol Toxicol Med 3:9–21

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Baune BT, Konrad C, Grotegerd D et al (2012) Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain. J Neuroinflamm 9:125

    CAS  Google Scholar 

  85. Stenfors CUD, Jonsdottir IH, Magnusson Hanson LL et al (2017) Associations between systemic pro-inflammatory markers, cognitive function and cognitive complaints in a population-based sample of working adults. J Psychosom Res 96:49–59

    CAS  PubMed  Google Scholar 

  86. Martínez-Cengotitabengoa M, Mac-Dowell KS, Leza JC et al (2012) Cognitive impairment is related to oxidative stress and chemokine levels in first psychotic episodes. Schizophr Res 137:66–72

    PubMed  Google Scholar 

  87. Zalcman S, Green-Johnson JM, Murray L et al (1994) Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and -6. Brain Res 643:40–49

    CAS  PubMed  Google Scholar 

  88. Zalcman S, Savina I, Wise RA (1999) Interleukin-6 increases sensitivity to the locomotor-stimulating effects of amphetamine in rats. Brain Res 847:276–283

    CAS  PubMed  Google Scholar 

  89. Gaspar PA, Bustamante ML, Silva H et al (2009) Molecular mechanisms underlying glutamatergic dysfunction in schizophrenia: therapeutic implications. J Neurochem 111:891–900

    CAS  PubMed  Google Scholar 

  90. Maier S, Watkins LR (1998) Cytokines for psychologists: implications of bidirectionalimmune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev 105:83–107

    CAS  PubMed  Google Scholar 

  91. Haapea M, Miettunen J, Läärä E, Joukamaa M, Järvelin M-R, Isohanni M, Veijola J (2008) Non-participation in a field survey with respect to psychiatric disorders. Scand J Public Health 36:728–736

    PubMed  Google Scholar 

  92. Hurtz S, Chow N, Watson AE et al (2019) Automated and manual hippocampal segmentation techniques: comparison of results, reproducibility and clinical applicability. Neuroimage 21:101574

    PubMed  Google Scholar 

  93. Wenger E, Martensson J, Noack H et al (2014) Comparing manual and automatic segmentation of hippocampal volumes: reliability and validity issues in younger and older brains. Hum Brain Mapp 35:4236–4248

    PubMed  PubMed Central  Google Scholar 

  94. O’Connor M et al (2009) To assess, to control, to exclude: effects of biobehavioral factors on circulating inflammatory markers. Brain Behav Immun 23:887–897

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Miller.

Ethics declarations

Conflict of interest

Dr. Miller has nothing to disclose for this study. In the past 12 months, Dr. Miller received research support from the National Institute of Mental Health, NARSAD, the Stanley Medical Research Institute, Acadia, Alkermes, and Augusta University; and Honoraria from Psychiatric Times. Dr. Herzig declares no conflict of interest. Mr. Jokelainen declares no conflict of interest. Mr. Karhu declares no conflict of interest. Dr. Keinänen-Kiukaanniemi declares no conflict of interest. Dr. Järvelin declares no conflict of interest. Dr. Veijola declares no conflict of interest. Dr. Viinamäki declares no conflict of interest. Dr. Jääskeläinen declares no conflict of interest. Dr. Isohanni declares no conflict of interest. Dr. Timonen declares no conflict of interest.

Additional information

Communicated by Peter Falkai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, B.J., Herzig, KH., Jokelainen, J. et al. Inflammation, hippocampal volume, and cognition in schizophrenia: results from the Northern Finland Birth Cohort 1966. Eur Arch Psychiatry Clin Neurosci 271, 609–622 (2021). https://doi.org/10.1007/s00406-020-01134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-020-01134-x

Keywords

Navigation