Skip to main content
Log in

Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The butterfly optimization algorithm (BOA) is a new metaheuristic algorithm that is inspired from food foraging behavior of the butterflies. Because of its simplicity and effectiveness, the algorithm has been proved to be effective in solving global optimization problems and applied to practical problems. However, BOA is prone to local optimality and may lose its diversity, thus suffering losses of premature convergence. In this work, a hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism called MBFPA was proposed. Firstly, the flower pollination algorithm has good exploration ability and the hybrid butterfly optimization algorithm and the flower pollination algorithms greatly improve the exploration ability of the algorithm; secondly, the symbiosis organisms search has a strong exploitation capability in the mutualism phase. By introducing the mutualism phase, the algorithm's exploitation capability is effectively increased and the algorithm's convergence speed is accelerated. Finally, the adaptive switching probability is increased to increase the algorithm's balance in exploration and exploitation capabilities. In order to evaluate the effectiveness of the algorithm, in the 49 standard test functions, the proposed algorithm was compared with six basic metaheuristic algorithms and five hybrid metaheuristic algorithms. MBFPA has also been used to solve five classic engineering problems (three-bar truss design problem; multi-plate disc clutch brake design; welded beam design; pressure vessel design problem; and speed reducer design). The results show that the proposed method is feasible and has good application prospect and competitiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Hussain K et al (2019) Metaheuristic research: a comprehensive survey. Artif Intell Rev 52:2191–2233

    Google Scholar 

  2. Blum C et al (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11:4135–4151

    Google Scholar 

  3. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, pp 1942–1948.

  4. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell 1:28–39

    Google Scholar 

  5. Basturk B, Karaboga D (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. In: Proceedings of the IEEE swarm intelligence symposium, pp 12–14.

  6. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of the world congress on nature & biologically inspired computing, NaBIC 2009, pp 210–14

  7. Yang XS (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, Lecture notes in computer science, 2012, 7445, pp 240–249

  8. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2:78–84

    Google Scholar 

  9. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  10. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  11. Heidari AA et al (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872

    Google Scholar 

  12. Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Google Scholar 

  13. Arora S, and S Singh. Butterfly optimization algorithm: a novel approach for global optimization. Soft Computing 23.3 (2019): 715–734.

  14. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Google Scholar 

  15. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    MathSciNet  MATH  Google Scholar 

  16. Jiao L, Wang L (2000) A novel genetic algorithm based on immunity. IEEE Trans Syst Man Cybern A Syst Hum 30:552–561

    Google Scholar 

  17. De Castro LN, Von Zuben FJ (2000) The clonal selection algorithm with engineering applications. In: Proceedings of GECCO, vol 2000.

  18. Dasgupta D et al (2004) Negative selection algorithm for aircraft fault detection. In: International conference on artificial immune systems. Springer, Berlin

  19. Kelsey J, Timmis J (2003) Immune inspired somatic contiguous hypermutation for function optimisation. Genetic Evolut Comput Conf, Springer, Berlin

    MATH  Google Scholar 

  20. Van Laarhoven PJM, Aarts EHL (1987) Simulated annealing: theory and applications. Springer, Dordrecht, pp 7–15

    MATH  Google Scholar 

  21. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    MATH  Google Scholar 

  22. Shareef H, Ibrahim AA, Mutlag AH (2015) Lightning search algorithm. Appl Soft Comput 36:315–333

    Google Scholar 

  23. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Google Scholar 

  24. Abedinpourshotorban H et al (2016) Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evolut Comput 26:8–22

    Google Scholar 

  25. Faramarzi A et al (2019) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst 105190.

  26. Lam AYS, Li VOK (2009) Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evolut Comput 14(3):381–399

    Google Scholar 

  27. Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38:13170–13180

    Google Scholar 

  28. Kumar M, Kulkarni AJ, Satapathy SC (2018) Socio evolution & learning optimization algorithm: a socio-inspired optimization methodology. Future Gener Comput Syst 81:252–272

    Google Scholar 

  29. Kuo HC, Lin CH (2013) Cultural evolution algorithm for global optimizations and its applications. J Appl Res Technol 11:510–522

    Google Scholar 

  30. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Design 43(3):303–315

    Google Scholar 

  31. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation. IEEE

  32. Arora S, Singh S (2016) An improved butterfly optimization algorithm for global optimization. Advanced Science, Engineering and Medicine 8(9):711–717

    Google Scholar 

  33. Arora S, Singh S (2017) An improved butterfly optimization algorithm with chaos. J Intell Fuzzy Syst 32(1):1079–1088

    MATH  Google Scholar 

  34. Arora S, Singh S (2017) A hybrid optimisation algorithm based on butterfly optimisation algorithm and differential evolution. Int J Swarm Intell 3(2–3):152–169

    Google Scholar 

  35. Arora S, Singh S (2017) An effective hybrid butterfly optimization algorithm with artificial bee colony for numerical optimization. Int J Interact Multimed Artif Intell 4(4):14–21

    Google Scholar 

  36. Arora S, Anand P (2018) Learning automata-based butterfly optimization algorithm for engineering design problems. Int J Comput Mater Sci Eng 7(04):1850021

    Google Scholar 

  37. Arora S, Singh S, Yetilmezsoy K (2018) A modified butterfly optimization algorithm for mechanical design optimization problems. J Braz Soc Mech Sci Eng 40(1):21

    Google Scholar 

  38. Singh B, Anand P (2018) A novel adaptive butterfly optimization algorithm. Int J Comput Mater Sci Eng 7(04):1850026

    Google Scholar 

  39. Li G, Shuang F, Zhao P et al (2019) An improved butterfly optimization algorithm for engineering design problems using the cross-entropy method. Symmetry 11(8):1049

    Google Scholar 

  40. Sharma S, Saha AK (2020) m-MBOA: a novel butterfly optimization algorithm enhanced with mutualism scheme. Soft Comput 24:4809–4827

    Google Scholar 

  41. Sharma S, Saha AK, Ramasamy V et al (2020) hBOSOS: an ensemble of butterfly optimization algorithm and symbiosis organisms search for global optimization. In: Advanced computing and intelligent engineering. Springer, Singapore, vol. 1089, pp 579–588

  42. Arora S, Anand P (2019) Binary butterfly optimization approaches for feature selection. Expert Syst Appl 116:147–160

    Google Scholar 

  43. Jalali SMJ, Ahmadian S, Kebria PM, et al (2019) Evolving artificial neural networks using butterfly optimization algorithm for data classification. In: International conference on neural information processing. Springer, Cham, pp 596–607.

  44. Du P et al (2019) Container throughput forecasting using a novel hybrid learning method with error correction strategy. Knowl-Based Syst 182:104853

    Google Scholar 

  45. Kisi O et al (2019) Drought forecasting using novel heuristic methods in a semi-arid environment. J Hydrol 578:124053

    Google Scholar 

  46. Priyadharshini P, Prakashraj K, Padmapriya S (2019) Improved butterfly optimization algorithm using local search operator for capacitated vehicle routing problem. Inter Res J Eng Technol (IRJET) 6(4):983–988

    Google Scholar 

  47. Abdul-Rashid R, Alawode BO (2019) Robustness evaluation of the butterfly optimization algorithm on a control system. arXiv preprint arXiv:1912.00185

  48. El Hajjami L, Mellouli EM, Berrada M (2019) Optimal PID control of an autonomous vehicle using butterfly optimization algorithm BOA. In: Proceedings of the 4th international conference on big data and internet of things, pp 1–5.

  49. Arora S, Singh S (2017) Node localization in wireless sensor networks using butterfly optimization algorithm. Arab J Sci Eng 42(8):3325–3335

    Google Scholar 

  50. Wang R, Zhou Y (2014) Flower pollination algorithm with dimension by dimension improvement. Math Probl Eng 481791, 9 pages

  51. Zhao C, Zhou Y (2016) A complex encoding flower pollination algorithm for global numerical optimization. In: International conference on intelligent computing. Springer, Cham, pp. 667–678.

  52. Zhou Y, Wang R, Luo Q (2016) Elite opposition-based flower pollination algorithm. Neurocomputing 188:294–310

    Google Scholar 

  53. Nabil E (2016) A modified flower pollination algorithm for global optimization. Expert Syst Appl 57:192–203

    Google Scholar 

  54. Singh D, Singh U, Salgotra R (2018) An extended version of flower pollination algorithm. Arab J Sci Eng 43(12):7573–7603

    Google Scholar 

  55. Lei M, Zhou Y, Luo Q (2019) Enhanced metaheuristic optimization: wind-driven flower pollination algorithm. IEEE Access 7:111439–111465

    Google Scholar 

  56. Pauline O, Meng OK, Kiong SC (2017) An improved flower pollination algorithm with chaos theory for function optimization. AIP Conf Proc AIP Publ LLC 1870(1):050012

    Google Scholar 

  57. Pathak P, Mahajan K (2015) A pollination based optimization for load balancing task scheduling in cloud computing. Int J Adv Res Comput Sci 6(7).

  58. Jensi R, Jiji GW (2015) Hybrid data clustering approach using k-means and flower pollination algorithm. arXiv preprint arXiv:1505.03236.

  59. Agarwal P, Mehta S (2016) Enhanced flower pollination algorithm on data clustering. Int J Comput Appl 38(2–3):144–155

    Google Scholar 

  60. Wang R, Zhou Y, Qiao S et al (2016) Flower pollination algorithm with bee pollinator for cluster analysis. Inf Process Lett 116(1):1–14

    Google Scholar 

  61. Harikrishnan R, Jawahar Senthil Kumar V, Sridevi Ponmalar P (2015) Nature inspired flower pollen algorithm for WSN localization problem. ARPN J Eng. Appl Sci 10(5):2122–2125

    Google Scholar 

  62. Goyal S, Patterh MS (2015) Flower pollination algorithm based localization of wireless sensor network. In: 2015 2nd international conference on recent advances in engineering & computational sciences (RAECS). IEEE, pp 1–5.

  63. Binh HTT, Hanh NT, Dey N (2018) Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks. Neural Comput Appl 30(7):2305–2317

    Google Scholar 

  64. Bensouyad M, Saidouni DE (2015) A hybrid discrete flower pollination algorithm for graph coloring problem. In: Proceedings of the international conference on engineering & MIS 2015, pp 1–6.

  65. Chakraborty D, Saha S, Maity S (2015) Training feedforward neural networks using hybrid flower pollination-gravitational search algorithm. In: 2015 International conference on futuristic trends on computational analysis and knowledge management (ABLAZE). IEEE, pp 261–266.

  66. Chiroma H, Khan A, Abubakar AI et al (2016) A new approach for forecasting OPEC petroleum consumption based on neural network train by using flower pollination algorithm. Appl Soft Comput 48:50–58

    Google Scholar 

  67. Velamuri S, Sreejith S, Ponnambalam P (2016) Static economic dispatch incorporating wind farm using flower pollination algorithm. Perspect Sci 8:260–262

    Google Scholar 

  68. Gonidakis D (2016) Application of flower pollination algorithm to multi-objective environmental/economic dispatch. Int J Manag Sci Eng Manag 11(4):213–221

    Google Scholar 

  69. Putra PH, Saputra TA (2016) Modified flower pollination algorithm for nonsmooth and multiple fuel options economic dispatch. In: 2016 8th international conference on information technology and electrical engineering (ICITEE). IEEE, pp 1–5.

  70. Shilaja C, Ravi K (2017) Optimization of emission/economic dispatch using euclidean affine flower pollination algorithm (eFPA) and binary FPA (BFPA) in solar photo voltaic generation. Renew Energy 107:550–566

    Google Scholar 

  71. Abdel-Baset M, Ibrahim MH (2015) An improved flower pollination algorithm for ratios optimization problems. Appl Math Inf Sci Lett Int J 3(2):83–91

    Google Scholar 

  72. Gautam U, Malmathanraj R, Srivastav C (2015) Simulation for path planning of autonomous underwater vehicle using flower pollination algorithm, genetic algorithm and Q-learning. In: 2015 international conference on cognitive computing and information processing (CCIP). IEEE, pp 1–5

  73. Zhou Y, Wang R (2016) An improved flower pollination algorithm for optimal unmanned undersea vehicle path planning problem. Int J Pattern Recognit Artif Intell 30(04):1659010

    Google Scholar 

  74. Wang R, Zhou Y, Zhao C et al (2015) A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation. Bio Med Mater Eng 26(s1):S1345–S1351

    Google Scholar 

  75. Doğan B, Ölmez T (2015) A new metaheuristic for numerical function optimization: vortex search algorithm. Inf Sci 293:125–145

    Google Scholar 

  76. Dokeroglu T, Sevinc E, Kucukyilmaz T et al (2019) A survey on new generation metaheuristic algorithms. Comput Ind Eng 137:106040

    Google Scholar 

  77. Ezugwu AE, Prayogo D (2019) Symbiotic organisms search algorithm: theory, recent advances and applications. Expert Syst Appl 119:184–209

    Google Scholar 

  78. Rashedi E, Rashedi E, Nezamabadi-pour H (2018) A comprehensive survey on gravitational search algorithm. Swarm Evolut Comput 41:141–158

    MATH  Google Scholar 

  79. Rubinstein RY (1997) Optimization of computer simulation models with rare events. Eur J Oper Res 99(1):89–112

    Google Scholar 

  80. Ram JP, Babu TS, Dragicevic T et al (2017) A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation. Energy Convers Manag 135:463–476

    Google Scholar 

  81. Zimmerman DW, Zumbo BD (1993) Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks. J Exp Educ 62(1):75–86

    Google Scholar 

  82. Singh N, Singh SB (2017) Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. J Appl Math 2017:1–14

    MathSciNet  MATH  Google Scholar 

  83. Khalilpourazari S, Pasandideh SHR (2019) Sine–cosine crow search algorithm: theory and applications. Neural Comput Appl 1–18. https://doi.org/10.1007/s00521-019-04530-0. in press

  84. Luo J, Shi B (2019) A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems. Appl Intell 49(5):1982–2000

    Google Scholar 

  85. Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inform Sci 178:3043–3074

    Google Scholar 

  86. Saremi S, Mirjalili S, Lewis A (2017) "Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Google Scholar 

  87. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Google Scholar 

  88. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10:629–640

    Google Scholar 

  89. Mirjalili S et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  90. Sadollah A et al (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Google Scholar 

  91. Zheng YJ (2015) Water wave optimization: a new nature-inspired metaheuristic. Comput Oper Res 55:1–11

    MathSciNet  MATH  Google Scholar 

  92. Savsani P, Savsani V (2016) Passing vehicle search (PVS): A novel metaheuristic algorithm. Appl Math Model 40:3951–3978

    Google Scholar 

  93. Deb K (1991) Optimal design of a welded beam via genetic algorithms. AIAA J 29(11):2013–2015

    Google Scholar 

  94. He Q, Wang L (2007) A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl Math Comput 186:1407–1422

    MathSciNet  MATH  Google Scholar 

  95. Yao W (2014) Genetic quantum particle swarm optimization algorithm for solving traveling salesman problems. In: Fuzzy information & engineering and operations research & management. Springer, Berlin, pp 67–74

  96. Kaveh A, Bakhshpoori T (2016) Water evaporation optimization: a novel physically inspired optimization algorithm. Comput Struct 167:69–85

    Google Scholar 

  97. Gandomi AH et al (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22:1239–1255

    Google Scholar 

  98. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99

    Google Scholar 

  99. Montemurro M, Vincenti A, Vannucci P (2013) The automatic dynamic penalisation method (ADP) for handling constraints with genetic algorithms. Comput Methods Appl Mech Eng 256:70–87

    MathSciNet  MATH  Google Scholar 

  100. Mezura-Montes E et al (2007) Multiple trial vectors in differential evolution for engineering design. Eng Opt 39(5):567–589

    MathSciNet  Google Scholar 

  101. Moosavi SHS, Bardsiri VK (2017) Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Eng Appl Artif Intell 60:1–15

    Google Scholar 

  102. Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded structures using geometric programming, pp 1021–1025.

  103. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82:781–798

    Google Scholar 

  104. Huang F, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186(1):340–356

    MathSciNet  MATH  Google Scholar 

  105. Mezura-Montes E, Velázquez-Reyes J, Coello CAC (2006) Modified differential evolution for constrained optimization. In: 2006 IEEE international conference on evolutionary computation. IEEE, pp 25–32

  106. Wang Y et al (2009) Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Struct Multidiscip Optim 37:395–413

    Google Scholar 

  107. Braekers K, Ramaekers K, Van Nieuwenhuyse I (2016) The vehicle routing problem: state of the art classification and review. Comput Ind Eng 99:300–313

    Google Scholar 

  108. Caceres-Cruz J, Arias P, Guimarans D et al (2014) Rich vehicle routing problem: Survey. ACM Comput Surv (CSUR) 47(2):1–28

    Google Scholar 

  109. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133

    MathSciNet  MATH  Google Scholar 

  110. Aljarah I, Faris H, Mirjalili S (2018) Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput 22(1):1–15

    Google Scholar 

  111. Zhang Y, Jin Z, Chen Y (2020) Hybrid teaching–learning-based optimization and neural network algorithm for engineering design optimization problems. Knowl Based Syst 187:104836

    Google Scholar 

  112. Zhang JR, Zhang J, Lok TM et al (2007) A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training. Appl Math Comput 185(2):1026–1037

    MATH  Google Scholar 

  113. Alba E, Chicano JF (2004) Training neural networks with GA hybrid algorithms. In: Genetic and evolutionary computation conference. Springer, Berlin, pp 852–863.

  114. Sexton RS, Dorsey RE, Johnson JD (1999) Optimization of neural networks: a comparative analysis of the genetic algorithm and simulated annealing. Eur J Oper Res 114(3):589–601

    MATH  Google Scholar 

  115. Sexton RS, Gupta JND (2000) Comparative evaluation of genetic algorithm and backpropagation for training neural networks. Inf Sci 129(1–4):45–59

    MATH  Google Scholar 

  116. Siddique MNH, Tokhi MO (2001) Training neural networks: backpropagation vs. genetic algorithms. In: IJCNN'01. International joint conference on neural networks. Proceedings (Cat. No. 01CH37222), vol 4. IEEE, pp 2673–2678.

  117. Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms and neural networks: Optimizing connections and connectivity. Parallel Comput 14(3):347–361

    Google Scholar 

  118. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolut Comput 11(1):1–18

    Google Scholar 

  119. Ilonen J, Kamarainen JK, Lampinen J (2003) Differential evolution training algorithm for feed-forward neural networks. Neural Process Lett 17(1):93–105

    Google Scholar 

  120. Slowik A, Bialko M (2008) Training of artificial neural networks using differential evolution algorithm. In: 2008 conference on human system interactions. IEEE, pp 60–65

  121. Wdaa ASI, Sttar A (2008) Differential evolution for neural networks learning enhancement. Universiti Teknologi Malaysia, Johor Bahru

    Google Scholar 

  122. Wienholt W (1993) Minimizing the system error in feedforward neural networks with evolution strategy. In: International conference on artificial neural networks. Springer, London, pp 490–493.

  123. Heidari AA, Faris H, Mirjalili S et al (2020) Ant lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks, Nature-Inspired Optimizers. Cham, Springer, pp 23–46

    Google Scholar 

  124. Derrac J, García S, Molina D et al (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18

    Google Scholar 

  125. Faris H, Aljarah I, Mirjalili S (2016) Training feedforward neural networks using multi-verse optimizer for binary classification problems. Appl Intell 45(2):322–332

    Google Scholar 

  126. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Google Scholar 

  127. Tian J, Sun C, Tan Y et al (2020) Granularity-based surrogate-assisted particle swarm optimization for high-dimensional expensive optimization. Knowl Based Syst 187:104815

    Google Scholar 

  128. Zheng Y, Fu X, Xuan Y (2019) Data-driven optimization based on random forest surrogate. In: 2019 6th international conference on systems and informatics (ICSAI). IEEE, pp 487–491

Download references

Acknowledgements

This work is supported by National Science Foundation of China under Grant No. 61563008, and by Project of Guangxi Natural Science Foundation under Grant No. 2018GXNSFAA138146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 A.1. Three-bar truss design

Minimize \(f(x) = (2\sqrt 2 x_{1} + x_{2} ) \times l\).

Subject to \(g_{1} (x) = \sqrt 2 x_{1} + x_{2} /\sqrt 2 x_{1}^{2} + 2x_{1} x_{2} P - \sigma \le 0;\)

$$g_{2} (x) = x_{2} /\sqrt 2 x_{1}^{2} + 2x_{1} x_{2} P - \sigma \le 0;$$
$$g_{3} (x) = 1/\sqrt 2 x_{2} + x_{1} P - \sigma \le 0;$$

Variable range \(0 \le x_{1} ,x_{2} \le 1\).

where \(l = 100\,{\hbox{cm}};\;\,P = 2\,{\hbox{kN}}/{\hbox{cm}}^{2} ;r = 2\,{\hbox{kN}}/{\hbox{cm}}^{2}\).

1.2 A.2. Multi-plate disc clutch brake design problem

Minimize \(f(x) = \pi (x_{2}^{2} - x_{1}^{2} )x_{3} (x_{5} + 1)\rho\).

Subject to:

\(g_{1} (x) = x_{2} - x_{1} - \Delta R \ge 0\), \(g_{2} (x) = L_{\max } - (x_{5} + 1)(x_{3} + \delta ) \ge 0\)

\(g_{3} (x) = P_{\max } - P_{rz} \ge 0\), \(g_{4} (x) = P_{\max } v_{sr\max } - P_{rz} v_{sr} \ge 0\)

\(g_{5} (x) = v_{sr\max } - v_{sr} \ge 0\), \(g_{6} (x) = T_{\max } - T \ge 0\)

\(g_{7} (x) = M_{h} - sM_{s} \ge 0\), \(g_{8} (x) = T \ge 0\)

where \(M_{h} = \frac{2}{3}\mu x4x5\frac{{x_{2}^{3} - x_{1}^{3} }}{{x_{2}^{2} - x_{1}^{2} }},\) \(w = \frac{\pi n}{{30}}rad/s\), \(A = \pi (x_{2}^{2} - x_{1}^{2} )\,{\hbox{mm}}^{2} ,\)

\(P_{rz} = \frac{{x_{4} }}{A}\,{\hbox{ N}}/{\hbox{mm}}^{2} ,\) \(V_{sr} = \frac{{\pi R_{sr} n}}{30}\,{\hbox{mm}}/{\hbox{s}}\), \(R_{sr} = \frac{2}{3}\frac{{x_{2}^{3} - x_{1}^{3} }}{{x_{2}^{2} x_{1}^{2} }}\,{\hbox{mm}}\)

\(T = \frac{{I_{z} \pi n}}{{30(M_{h} + M_{f} )}}\) mm, \(\Delta r = 20\,{\hbox{mm}},L\max = 30\,{\hbox{mm}},\mu = 0.6\)

\(T_{\max } = 15s,\mu = 0.5,s = 1.5,M_{s} = 40Nm,\)

\(p_{\max } = 1Mp_{a} ,\rho = 0.0000078\,{\hbox{kg}}/{\hbox{mm}}^{3}\), \(v_{sr\max } = 10\,{\hbox{m}}/{\hbox{s}},\delta = 0.5\,{\hbox{mm}},s = 1.5\)

\(T_{\max } = 15s,n = 250\,{\hbox{rpm}},\;I_{z} = 55{\hbox{kg}}\,{\hbox{m}}^{2}\), \(M_{s} = 40\,{\hbox{Nm}},\;M_{f} = 3\,{\hbox{Nm}}\)

\(60 \le x_{1} \le 80,90 \le x_{2} \le 110,1 \le x_{3} \le 3,\)

\(60 \le x_{4} \le 1000,2 \le x_{5} \le 9,\)\(i = 1,2,3,4,5\).

1.3 A.3. Pressure vessel design problem

Consider \(x = [x_{1} ,x_{2} ,x_{3} ,x_{4} ] = [T_{s} ,T_{h} ,R,L]\).

Minimize \(f(x) = 0.6224x_{1} x_{3} x_{4} + 1.7781x_{2} x_{2}^{3} + 3.1661x_{1}^{2} x_{4} + 19.84x_{1}^{2} x_{3}\).

Subject to:

\(g_{1} (x) = - x_{1} + 0.0193x_{3} \le 0\), \(g_{2} (x) = - x_{3} + 0.00954z_{3} \le 0\)

\(g_{3} (x) = - \pi x_{3}^{2} x_{4} - \frac{4}{3}\pi x_{3}^{3} + 1,296,000 \le 0\),\(g_{4} (x) = x_{4} - 240 \le 0\)

Variable range \(0 \le x_{1} ,x_{2} \le 99\); \(0 \le x_{3} ,x_{4} \le 200\).

1.4 A.4. Welded beam design problem

Consider \({\text{Z}} = [z_{1} ,z_{2} ,z_{3} ,z_{4} ] = [h,l,t,b]\).

Minimize \(f(Z) = 1.10471z_{1}^{2} z_{2} + 0.04811z_{3} z_{4} (14.0 + z_{2} )\).

Subject to

\(g_{1} (Z) = \tau ({\text{Z) - }}\tau_{{\max}} \le 0\),\(g_{2} (Z) = \sigma (Z) - \sigma_{\max } \le 0\),\(g_{3} (Z) = \delta (Z) - \delta_{\max } \le 0\)

\(g_{4} (Z) = z_{1} - z_{4} \le 0\),\(g_{5} (Z) = P - P_{c} (Z) \le 0\),\(g_{6} (Z) = 0.125 - z_{1} \le 0\)

\(g_{7} (Z) = 1.10471z_{1}^{2} + 0.04811z_{3} z_{4} (14.0 + z_{2} ) - 5.0 \le 0\)

Variable range \(0.05 \le z_{1} \le 2.00\),\(0.25 \le z_{2} \le 1.30\), \(2.00 \le z_{3} \le 15.0\)

where \(\tau (Z) = \sqrt {\tau ^{{\prime}{2}} + 2\tau ^{\prime}\tau ^{\prime\prime}\frac{{z_{2} }}{2R} + \tau ^{\prime\prime}2} ,\tau ^{\prime} = \frac{P}{{\sqrt 2 z_{1} z_{2} }},\tau ^{\prime\prime} = \frac{MR}{J},M = P(L + \frac{{z_{2} }}{2})\)

\(R = \sqrt {\frac{{z_{2}^{2} }}{4} + (\frac{{z_{1} + z_{3} }}{2})^{2} } ,J = 2\left\{ {\sqrt 2 z_{1} z_{2} \left[ {\frac{{z_{2}^{2} }}{12} + (\frac{{z_{1} + z_{3} }}{2})^{2} } \right]} \right\}\)

\(\sigma (Z) = \frac{6PL}{{z_{4} z_{3}^{2} }},\delta (Z) = \frac{{4PL^{3} }}{{Ez_{3}^{3} z_{4} }},P_{c} (Z) = \frac{{4.013E\sqrt {\frac{{z_{3}^{2} z_{4}^{6} }}{36}} }}{{L^{2} }}\left( {1 - \frac{{z_{3} }}{2L}\sqrt {\frac{E}{4G} }} \right)\)

\(P = 6000lb,L = 14in,E = 30 \times 10^{6} psi,G = 12 \times 10^{6} psi\).

1.5 A.5. Speed reducer

Minimize \(f(x) = 0.785x_{1} x_{2}^{2} (3.333x_{3}^{2} + 14.9334x_{3} - 42.0934)\)

$$- 1.508x_{1} (x_{6}^{2} + x_{7}^{2} ) + 7.4777x_{1} (x_{6}^{3} + x_{7}^{3} ) + 1.508x_{1} (x_{4} x_{6}^{2} + x_{5} x_{7}^{2} )$$

Subject to

\(g_{1} (X) = \frac{27}{{x_{1} x_{2}^{2} x_{3} }} - 1 \le 0\), \(g_{2} (X) = \frac{397.5}{{x_{1} x_{2} x_{3}^{2} }} - 1 \le 0\)

\(g_{3} (X) = \frac{{1.93x_{4}^{3} }}{{x_{1} x_{3} x_{6}^{4} }} - 1 \le 0\),\(g_{4} (X) = \frac{{1.93x_{4}^{3} }}{{x_{1} x_{3} x_{7}^{4} }} - 1 \le 0\)

\(g_{5} (X) = \frac{1}{{110x_{6}^{3} }}\sqrt {(\frac{{745x_{4} }}{{x_{{{2} }} x_{{{3} }} }})^{2} + 16.9 \times 10^{6} } - 1 \le 0\) \(g_{6} (X) = \frac{1}{{85x_{7}^{3} }}\sqrt {(\frac{{745x_{4} }}{{x_{2} x_{3} }})^{2} + 157.5 \times 10^{6} } - 1 \le 0\)

\(g_{7} (X) = \frac{x2x3}{{40}} - 1 \le 0\), \(g_{8} (X) = \frac{5x2}{{x1}} - 1 \le 0\), \(g_{9} (X) = \frac{x1}{{12x2}} - 1 \le 0\)

\(g_{10} (X) = \frac{1.5x6 + 1.9}{{x4}} - 1 \le 0\), \(g_{11} (X) = \frac{1.1x7 + 1.9}{{x5}} - 1 \le 0\).

where \(2.6 \le x1 \le 3.6,\)\(0.7 \le x2 \le 0.8,\)\(17 \le x3 \le 28,\)\(7.3 \le x4 \le 8.3\)

\(7.8 \le x5 \le 8.3,\)\(2.9 \le x6 \le 3.9,\)\(5.0 \le x7 \le 5.5\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Luo, Q. & Zhou, Y. Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems. Engineering with Computers 37, 3665–3698 (2021). https://doi.org/10.1007/s00366-020-01025-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01025-8

Keywords

Navigation