Skip to main content

Advertisement

Log in

Synthesis and Application of MnO2/Exfoliated Graphite Electrodes for Enhanced Photoelectrochemical Degradation of Methylene Blue and Congo Red Dyes in Water

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Exfoliated graphite (EG), manganese dioxide (MnO2), and EG/MnO2-based electrodes were used in this work for the degradation of organic pollutants in wastewater under visible light irradiation. Methylene blue and Congo red dyes were used for the degradation. The synthesis of the nanocomposite electrodes was carried out through the co-precipitation technique. The electrodes were engaged for degradation of the dyes under electrochemical oxidation, photolysis, and photoelectrochemical methods. The characterization techniques utilized encompass transmission electron microscopy (TEM), ultraviolet-visible (UV) analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, Fourier transformed infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The EG/MnO2 photoanode was applied in the photoelectrochemical degradation of 0.1 × 10–4 M methylene blue and Congo red dyes in 0.1 M Na2SO4 under visible light irradiation. The XRD analysis revealed that the MnO2 exist as α-MnO2. SEM morphologies showed a satisfying dispersion of MnO2 on EG. The EG/MnO2 composite absorbed a noticeable amount of light in the visible light region compared with the pure EG and MnO2. The photoelectrochemical degradation process resulted in enhanced degradation efficiency of Congo red (97.6%) and methylene blue (98.7%) within 60 min and was observed to be higher than those of photolysis and electrochemical oxidation processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Nigam, I.M. Banat, D. Singh, R. Marchant, Biochem. 31(5), 435–442 (1996)

    CAS  Google Scholar 

  2. S.H.S. Chan, W.T. Yeong, J.C. Juan, C.Y. Teh, J. Chem. Technol. Biotechnol. 86(9), 1130–1158 (2011)

    Article  CAS  Google Scholar 

  3. G.R.P. Malpass, D.W. Miwa, A.C.P. Miwa, S.A.S. Machado, A.J. Motheo, Environ. Sci. Technol. 41(20), 7120–7125 (2007)

    Article  CAS  Google Scholar 

  4. A.S. Stasinakis, J. Global NEST 10(3), 376–385 (2008)

    Google Scholar 

  5. X. Zhao, Y. Zhu, Environ. Sci. Technol. 40(10), 3367–3372 (2006)

    Article  CAS  Google Scholar 

  6. R.M. Asmussen, M. Tian, A. Chen, Environ. Sci. Technol. 43(13), 5100–5105 (2009)

    Article  CAS  Google Scholar 

  7. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147(1), 1–59 (2009)

    Article  CAS  Google Scholar 

  8. O.M. Ama, Int. J. Nano. Med. Eng. 2(8), 145–151 (2017)

    Google Scholar 

  9. G. Hurwitz, P. Pornwongthong, S. Mahendra, E.M. Hoek, J. Chem. Eng. 240, 235–243 (2014)

    Article  CAS  Google Scholar 

  10. W. Anku, O.O. Samuel, K.S. Sudheesh, P. Poomani, Acta Chim. Slov. 63(2), 380–391 (2016)

    Article  CAS  Google Scholar 

  11. M. Bagheri, R. N. Najme, B.Elham, (2019)

  12. E. Pargoletti, G. Cappelletti, A. Minguzzi, S. Rondinini, M. Leoni, M. Marelli, A. Vertova, High-performance of bare and Ti-doped α-MnO2 nanoparticles in catalyzing the oxygen reduction reaction. J. Power Sources 325, 116–128 (2016)

    Article  CAS  Google Scholar 

  13. S. Orsini, E. Pargoletti, A. Vertova, A. Minguzzi, C. Locatelli, S. Rondinini, G. Cappelletti, J. Electron. Chem. 808, 439–445 (2018)

    Article  CAS  Google Scholar 

  14. A.B. Djurisič, Y.H. Leung, A.M.C. Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater. Horiz. 1(4), 400–410 (2014)

    Article  Google Scholar 

  15. M. Ou, J. Huang, X. Yang, K. Quan, Y. Yang, N. Xie, K. Wang, Chem. Sci. 8, 668–673 (2017)

    Article  CAS  Google Scholar 

  16. J.T. Liu, X. Ge, X.X. Ye, G.Z. Wang, H.M. Zhang, H.J. Zhou, Y.X. Zhang, H.J. Zhao, J. Mater. Chem. A 4, 1970–1979 (2016)

    Article  CAS  Google Scholar 

  17. R. Salunkhe, A.J.H.K. Rahul, Y. Heejoon, Yamauchi, Nanotechnol 26(20), 204004 (2015)

    Article  Google Scholar 

  18. T.L.B. Ferreira, L.M.P. Garcia, G.H.M. Gurgel, R.M. Nascimento, M.J. Godinho, M.H.M. Rodrigues, M.R.D. Bomio, F.V. Motta, J. Mater. Sci. Mater. Electron. 29(14), 12278–12287 (2018)

    Article  CAS  Google Scholar 

  19. Y. Chan, S. Leng, Y. Pung, N.S. Hussain, S. Sreekantan, F.Y. Yeoh, Trans. Tech. Pub, 167–174 (2013)

  20. R. Muniba, A. Rehman, S. Rahmat, H.N. Bhatti, M. Iqbal, W.S. Khan, S.Z. Bajwa, R. Rahmat, A. Nazir, J. Mater. Res. Technol. 8(6), 5149–5159 (2019)

    Article  Google Scholar 

  21. M.G. Peleyeju, E.H. Umukoro, L. Tshwenya, R. Moutloali, O. Babalola, O.A. Arotiba, Photoelectrocatalytic water treatment systems: degradation, kinetics and intermediate products studies of sulfamethoxazole on a TiO2–exfoliated graphite electrode. RSC Adv.. 7(64), 40571–40580 (2017)

    Article  CAS  Google Scholar 

  22. O.M. Ama, N. Kumar, F.V. Adams, S.S. Ray, Electron, 1–9 (2018)

  23. N. Basahel, T. Sulaiman, T. Ali, Nanoscale Res. Lett. 10(1), 73 (2015)

    Article  Google Scholar 

  24. J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Dalton Trans. 41(37), 11482–11490 (2012)

    Article  CAS  Google Scholar 

  25. J.J. Liu, X.L. Fu, S.F. Chen, Y.F. Zhu, Appl. Phys. Lett. 99(19), 191903 (2011)

    Article  Google Scholar 

  26. W. Gong, X. Meng, X. Ji, P. Tang, Catal 7(1), 19 (2017)

    Article  Google Scholar 

  27. S. Li, X. Lu, Y. Xue, J. Lei, T. Zheng, C. Wang, PLoS One 7(8), 43328 (2012)

    Article  Google Scholar 

  28. X. Liu, L. Pan, T. Lv, Z. Sun, C.Q. Sun, J. Colloid Interface Sci. 408, 145–150 (2013)

    Article  CAS  Google Scholar 

  29. B.K. Koo, D.Y. Lee, H.J. Kim, W.J. Lee, J.S. Song, H.J. Kim, J. Electron. 17(1), 79–82 (2006)

    CAS  Google Scholar 

  30. H. Wang, Z. Lu, D. Qian, Y. Li, W. Zhang, Nanotechnol 18(11), 115616 (2007)

    Article  Google Scholar 

  31. A. Aleboyeh, M.E. Olya, H. Aleboyeh, Chem. Eng. J. 137(3), 518–524 (2008)

    Article  CAS  Google Scholar 

  32. Q. Zhang, C. Li, T. Li. Int. J. Photogr. (2012)

  33. H. Liu, S. Cheng, M. Wu, H. Wu, J. Zhang, L.W.C. Cao, J. Phys. Chem. A 104(30), 7016–7020 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors which to acknowledged Kamdem Hugues for assistance of one material used for the experiment also Csir, (PDRF), NRF University of Johannesburg, Vaal University of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onoyivwe Monday Ama.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ama, O.M., Khoele, K., Anku, W.W. et al. Synthesis and Application of MnO2/Exfoliated Graphite Electrodes for Enhanced Photoelectrochemical Degradation of Methylene Blue and Congo Red Dyes in Water. Electrocatalysis 11, 413–421 (2020). https://doi.org/10.1007/s12678-020-00601-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00601-2

Keywords

Navigation