Skip to main content

Advertisement

Log in

Missing the mark(er): pseudogenes identified through whole mitochondrial genome sequencing provide new insight into invasive lionfish genetics

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

As documented marine invasions rise, determining the underlying molecular mechanisms of successful invasions is an immediate concern to management, but the relevance of such genetic studies hinges upon choosing the right markers. Most invasive lionfish phylogeography studies have used only the mitochondrial D-loop marker. For this study, three markers were targeted in invasive lionfish (n = 148): D-loop (mitochondrial), cytochrome oxidase I (mitochondrial), and S7 ribosomal intron-1 (nuclear). Using both mitochondrial and nuclear markers showed evidence of hybridization. At the D-loop marker, all sequences grouped with the Pacific Ocean lineage represented by Pterois volitans. At the S7 intron-1, all sequences grouped with the Indian Ocean S7 intron-1 haplotype associated with the Indian Ocean lineage represented by Pterois miles, showing discordance between the mitochondrial and nuclear markers. Further, at the COI marker, three out of 163 individuals sequenced matched P. miles. High throughput sequencing of the entire mitochondrial genome (n = 7) revealed that incongruence between mtDNA markers may be due to the insertion of mitochondrial DNA from P. volitans into the nuclear genome of fish genetically identified as P. miles. These data suggest hybridization and demonstrate that careful marker choice is important in future studies of lionfish genetics and invasive species in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguilar-Perera A, Tuz-Sulub A (2010) Non-native, invasive red lionfish (Pterois volitans [Linnaeus, 1758]: Scorpaenidae), is first recorded in the southern Gulf of Mexico, off the northern Yucatan Peninsula, Mexico. Aquat Invasions 5:S9–S12

    Google Scholar 

  • Albins MA, Hixon MA (2008) Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar Ecol Prog Ser 367:233–238

    Google Scholar 

  • Albins MA, Hixon MA (2013) Worst case scenario: potential long-term effects of invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. Environ Biol Fishes 96:1151–1157

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Antunes A, Ramos MJ (2005) Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes. Genomics 86:708–717

    PubMed  CAS  Google Scholar 

  • Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27:313–323

    Google Scholar 

  • Bensasson DD, Zhang DX, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 16:314–321

    PubMed  CAS  Google Scholar 

  • Betancur-R R, Hines A, Acero P, Ortí G, Wilbur AE, Freshwater DW (2011) Reconstructing the lionfish invasion: insights into Greater Caribbean biogeography. J Biogeogr 38:1281–1293

    Google Scholar 

  • Bock G, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH (2015) What we still don’t know about invasion genetics. Mol Ecol 24:2277–2297

    PubMed  Google Scholar 

  • Boros G, Mozsár A, Vitál Z, Nagy AS, Specziár A (2014) Growth and condition factor of hybrid (Bighead Hypophthalmichthys nobilis Richardson, 1845× silver carp H. molitrix Valenciennes, 1844) Asian carps in the shallow, oligo-mesotrophic Lake Balaton. J Appl Ichthyol 30:546–548

    Google Scholar 

  • Bors EK, Herrera S, Morris JA Jr, Shank TM (2019) Population genomics of rapidly invading lionfish in the Caribbean reveals signals of range expansion in the absence of spatial population structure. Ecol Evolut. https://doi.org/10.1002/ece3.4952

    Article  Google Scholar 

  • Butterfield JSS, Díaz-Ferguson E, Silliman BR, Saunders JW, Buddo D, Mignucci-Giannoni AA, Searle L, Allen AC, Hunter ME (2015) Wide-ranging phylogeographic structure of invasive red lionfish in the Western Atlantic and Greater Caribbean. Mar Biol 162:773–781

    Google Scholar 

  • Clement M, Posada DCKA, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    PubMed  CAS  Google Scholar 

  • Consuegra S, John E, Verspoor E, De Leaniz CG (2015) Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet Select Evolut 47:58

    Google Scholar 

  • Côté IM, Maljković A (2010) Predation rates of Indo-Pacific lionfish on Bahamian coral reefs. Mar Ecol Prog Ser 404:219–225

    Google Scholar 

  • Cristescu ME (2015) Genetic reconstructions of invasion history. Mol Ecol 24:2212–2225

    PubMed  Google Scholar 

  • Darling E, Green S, O’Leary JK, Côté I (2011) M. Indo-Pacific lionfish are larger and more abundant on invaded reefs: a comparison of Kenyan and Bahamian lionfish populations. Biol Invasions 13:2045–2051

    Google Scholar 

  • Dudu A, Georgescu SE, Berrrebi P, Costache M (2012) Site heteroplasmy in the mitochondrial cytochrome b gene of the sterlet sturgeon Acipenser ruthenus. Genet Mol Biol 35:886–891

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ferreira CEL, Luiz OJ, Floeter SR, Lucena MB, Barbosa MC, Rocha CR, Rocha LA (2015) First record of invasive lionfish (Pterois volitans) for the Brazilian coast. PLoS ONE 10:e0123002

    PubMed  PubMed Central  Google Scholar 

  • Freshwater DW, Hines A, Parham S, Wilbur AE, Sabaoun M, Woodhead J, Akins JL, Purdy B, Whitfield PE, Paris CB (2009a) Mitochondrial control region sequence analyses indicate dispersal from the US East Coast as the source of the invasive Indo-Pacific lionfish Pterois volitans in the Bahamas. Mar Biol 156:1213–1221

    Google Scholar 

  • Freshwater DW, Hamner RM, Parham S, Wilbur AE (2009b) Molecular evidence that the lionfishes Pterois miles and Pterois volitans are distinct species. J North Carol Acad Sci 125:39–46

    CAS  Google Scholar 

  • Galtier N, Nabholz B, Glémin S, Hurst GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550

    PubMed  CAS  Google Scholar 

  • Green SJ, Akins JL, Maljkovic´ A, Coˆte´ IM, (2012) Invasive lionfish drive Atlantic coral reef fish declines. PLoS ONE 7:e32596

    PubMed  PubMed Central  CAS  Google Scholar 

  • Green SJ, Akins JL, Côté IM (2011) Foraging behaviour and prey consumption in the Indo-Pacific lionfish on Bahamian coral reefs. Mar Ecol Prog Ser 433:159–167

    Google Scholar 

  • Green SJ, Coˆte´ IM, (2008) Record densities of Indo-Pacific lionfish on Bahamian coral reefs. Coral Reefs 28:107

    Google Scholar 

  • Good JM, Vanderpool D, Keeble S, Bi K (2015) Negligible nuclear introgression despite complete mitochondrial capture between two species of chipmunks. Evolution 69(8):1961–1972

    PubMed  CAS  Google Scholar 

  • Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474

    PubMed  Google Scholar 

  • Hahn MA, Rieseberg LH (2017) Genetic admixture and heterosis may enhance the invasiveness of common ragweed. Evol Appl 10:241–250

    PubMed  CAS  Google Scholar 

  • Hamner RM, Freshwater DW, Whitfield PE (2007) Mitochondrial cytochrome b analysis reveals two invasive lionfish species with strong founder effects in the western Atlantic. J Fish Biol 71:214–222

    CAS  Google Scholar 

  • Hazkani-Covo E, Covo S (2008) Numt-mediated double-strand break repair mitigates deletions during primate genome evolution. PLoS Genet 4(10):e1000237

    PubMed  PubMed Central  Google Scholar 

  • Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6(2):e1000834

    PubMed  PubMed Central  Google Scholar 

  • Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548

    CAS  Google Scholar 

  • Johnson J, Bird C, Johnston MA, Fogg AQ, Hogan JD (2016) Regional genetic structure and genetic founder effects in the invasive lionfish: comparing the Gulf of Mexico. Caribb N Atl Mar Biol 163:216

    Google Scholar 

  • Kochzius M, Söller R, Khalaf MA, Blohm D (2003) Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences. Mol Phylogenet Evol 28:396–403

    PubMed  CAS  Google Scholar 

  • Kolbe JJ, Larson A, Losos JB, de Queiroz K (2008) Admixture determines genetic diversity and population differentiation in the biological invasion of a lizard species. Biol Lett 4:434–437

    PubMed  PubMed Central  Google Scholar 

  • Lamer JT, Dolan CR, Petersen JL, Chick JH, Epifanio JM (2010) Introgressive hybridization between bighead carp and silver carp in the Mississippi and Illinois Rivers. N Am J Fish Manag 30:1452–1461

    Google Scholar 

  • Layman CA, Jud ZR, Nichols P (2014) Lionfish alter benthic invertebrate assemblages in patch habitats of a subtropical estuary. Mar Biol 161:2179–2182

    Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Liang B, Wang N, Li N, Kimball RT, Braun EL (2018) Comparative Genomics Reveals a Burst of Homoplasy-Free Numt Insertions. Mol Biol Evol 35(8):2060–2064

    PubMed  CAS  Google Scholar 

  • Lindholm AK, Breden F, Alexander HJ, Chan W-K, Thakurta SG, Brooks R (2005) Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia. Mol Ecol 14:3671–3682

    PubMed  CAS  Google Scholar 

  • McCormick MI, Allan BJM (2016) Lionfish misidentification circumvents an optimized escape response by prey. Conserv Physiol 4:cow064

    PubMed  PubMed Central  Google Scholar 

  • McDonald JH, Kreitman M (1991) Neutral mutation hypothesis test. Nature 354:6349

    Google Scholar 

  • McGeoch MA, Butchart SHM, Spear D, Marais E, Kleynhans EJ, Symes A, Chanson J, Hoffmann M (2010) Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Divers Distrib 16:95–108

    Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492

    Google Scholar 

  • Morgan JA, Macbeth M, Broderick D, Whatmore P, Street R, Welch DJ, Ovenden JR (2013) Hybridisation, paternal leakage and mitochondrial DNA linearization in three anomalous fish (Scombridae). Mitochondrion 13:852–861

    PubMed  CAS  Google Scholar 

  • Moritz CTED, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst 18:269–292

    Google Scholar 

  • Morris JA, Akins JL, Barse A, Cerino D, Freshwater DW, Green SJ, Muñoz RC, Paris C, Whitfield PE (2009) Biology and ecology of the invasive lionfishes, Pterois miles and Pterois volitans. Proc Gulf Caribb Fish Inst 1(61):409–414

    Google Scholar 

  • Mourier T, Hansen AJ, Willerslev E, Arctander P (2001) The Human Genome Project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol 18(9):1833–1837

    PubMed  CAS  Google Scholar 

  • Nielsen HM, Ødegård J, Olesen I, Gjerde B, Ardo L, Jeney G, Jeney Z (2010) Genetic analysis of common carp (Cyprinus carpio) strains: I: genetic parameters and heterosis for growth traits and survival. Aquaculture 304:14–21

    CAS  Google Scholar 

  • Pérez-Portela R, Bumford A, Coffman B, Wedelich S, Davenport M, Fogg A, Swenarton MK, Coleman F, Johnston MA, Crawford DL, Oleksiak MF (2018) Genetic homogeneity of the invasive lionfish across the Northwestern Atlantic and the Gulf of Mexico based on Single Nucleotide Polymorphisms. Sci Rep 8:5062

    PubMed  PubMed Central  Google Scholar 

  • Ricchetti M, Tekaia F, Dujon B (2004) Continued colonization of the human genome by mitochondrial DNA. PLoS Biol 2(9):e273

    PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    PubMed  CAS  Google Scholar 

  • Ruttenberg BI, Schofield PJ, Akins JL, Acosta A, Feeley MW, Blondeau J, Smith SG, Ault JS (2012) Rapid invasion of Indo-Pacific lionfishes (Pterois volitans and Pterois miles) in the Florida Keys, USA: evidence from multiple pre-and post-invasion data sets. Bull Mar Sci 88:1051–1059

    Google Scholar 

  • Schofield PJ (2009) Geographic extent and chronology of the invasion of non-native lionfish (Pterois volitans [Linnaeus 1758] and P. miles [Bennett 1828]) in the Western North Atlantic and Caribbean Sea. Aquat Invasions 4:473–0479

    Google Scholar 

  • Schultz ET (1986) Pterois volitans and Pterois miles: two valid species. Copeia 3:686–690

    Google Scholar 

  • Silva G, Lima FP, Martel P, Castilho R (2014) Thermal adaptation and clinal mitochondrial DNA variation of European anchovy. Proc R Soc Lond B 281:20141093

    Google Scholar 

  • Smith KF, Abbott CL, Saito Y, Fidler AE (2015) Comparison of whole mitochondrial genome sequences from two clades of the invasive ascidian, Didemnum vexillum. Mar Genomics 19:75–83

    PubMed  Google Scholar 

  • Sutherland WJ, Clout M, Côté IM et al (2010) A horizon scan of global conservation issues for 2010. Trends Ecol Evol 25:1–7

    PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    PubMed  CAS  Google Scholar 

  • Tang CQ, Leasi F, Obertegger U, Kieneke A, Barraclough TG, Fontaneto D (2012) The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proc Natl Acad Sci USA 109:16208–16212

    PubMed  CAS  PubMed Central  Google Scholar 

  • Teletchea F, Laudet V, Hänni C (2006) Phylogeny of the Gadidae (sensu Svetovidov, 1948) based on their morphology and two mitochondrial genes. Mol Phylogenet Evol 38:189–199

    PubMed  CAS  Google Scholar 

  • Toledo-Hernández C, Vélez-Zuazo X, Ruiz-Diaz CP, Patricio AR, Mège P, Navarro M, Sabat AM, Betancur-R R, Papa R (2014) Population ecology and genetics of the invasive lionfish in Puerto Rico. Aquat Invasions 9:227–237

    Google Scholar 

  • Tourmen Y, Baris O, Dessen P, Jacques C, Malthièry Y, Reynier P (2002) Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics 80(1):71–77

    PubMed  CAS  Google Scholar 

  • Van Kleunen M, Röckle M, Stift M (2015) Admixture between native and invasive populations may increase invasiveness of Mimulus guttatus. Proc R Soc Lond B 282:20151487

    Google Scholar 

  • Wang L, Liu S, Zhuang Z, Guo L, Meng Z, Lin H (2013) Population genetic studies revealed local adaptation in a high gene-flow marine fish, the small yellow croaker (Larimichthys polyactis). PLoS ONE 8:e83493

    PubMed  PubMed Central  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) Barcoding Australia’s fish species. Philos Trans R Soc B 360:1847–1857

    CAS  Google Scholar 

  • White DJ, Wolff JN, Pierson M, Gemmell NJ (2008) Revealing the hidden complexities of mtDNA inheritance. Mol Ecol 17:4925–4942

    PubMed  CAS  Google Scholar 

  • Whitfield PE, Hare JA, David AW, Harter SL, Munoz RC, Addison CM (2007) Abundance estimates of the Indo-Pacific lionfish Pterois volitans/miles complex in the Western North Atlantic. Biol Invasions 9:53–64

    Google Scholar 

  • Wilcox CL, Motomura H, Matsunuma M, Bowen BW (2018) Phylogeography of lionfishes (Pterois) indicate taxonomic over splitting and hybrid origin of the invasive Pterois volitans. J Hered 109:162–175

    PubMed  CAS  Google Scholar 

  • Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC et al (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    PubMed  CAS  Google Scholar 

  • Yaakub SM, Bellwood DR, van Herwerden L, Walsh FM (2006) Hybridization in coral reef fishes: introgression and bi-directional gene exchange in Thalassoma (family Labridae). Mol Phylogenet Evol 40:84–100

    PubMed  CAS  Google Scholar 

  • Zapfe L, Freeland JR (2015) Heterosis in invasive F 1 cattail hybrids (Typha×glauca). Aquat Bot 125:44–47

    Google Scholar 

  • Zieliński P, Nadachowska-Brzyska K, Wielstra B, Szkotak R, Covaciu-Marcov SD, Cogălniceanu D, Babik W (2013) No evidence for nuclear introgression despite complete mt DNA replacement in the Carpathian newt (L issotriton montandoni). Mol Ecol 22(7):1884–1903

    PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge and thank Amy Brower, Margaret Hunter, Kirsty McFarland, Captain Andrew Ross, Tyler Steube, Divers Supply (Jacksonville), Suncoast Spearfishing Challenge, Pensacola Lionfish Awareness & Removal Day, Florida Fish and Wildlife Conservation Commission, Upper Keys Lionfish Derby (Key Largo), and Forfar Field Station (Andros Island) for help in collection of tissue samples.

Author information

Authors and Affiliations

Authors

Contributions

AMJ conceived the research and coordinated sampling. Laboratory work, including DNA extractions and PCR, and subsequent analyses were performed by JW and reviewed by AMJ JW wrote the manuscript with significant review performed by AMJ.

Corresponding author

Correspondence to Justine M. Whitaker.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10592_2020_1263_MOESM1_ESM.xlsx

Supplementary file1 (XLSX 21 kb). Appendix 1. Sample identification number, location and match when Saner sequence results were queried against BLASTn database. D-loop and COI sequences are identified in Genbank as P. volitans or P. miles, and S7 intron-1 sequences are identified as Indian Ocean lineage (representing P. miles), and Pacific Ocean lineage (representing P. volitans/russelli/lunulata)

10592_2020_1263_MOESM2_ESM.xlsx

Supplementary file2 (XLSX 98 kb). Appendix 2. Single nucleotide polymorphisms identified when aligned to the P. volitans reference, accession #KM488633.1

10592_2020_1263_MOESM3_ESM.xlsx

Supplementary file3 (XLSX 143 kb). Appendix 3. Single nucleotide polymorphisms identified when aligned to the P. miles reference, accession #K022697.1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitaker, J.M., Janosik, A.M. Missing the mark(er): pseudogenes identified through whole mitochondrial genome sequencing provide new insight into invasive lionfish genetics. Conserv Genet 21, 467–480 (2020). https://doi.org/10.1007/s10592-020-01263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-020-01263-9

Keywords

Navigation